The Nuclear Shell Model

N. A. Smirnova

CEN Bordeaux-Gradignan, France

Bridging Methods in Nuclear Theory
IPHC, Strasbourg, June 26–30, 2017
The Nuclear Shell Model

Table of contents

1. Introduction to the nuclear many-body problem: variational against diagonalization methods
 (lecture of Ph. Quentin on self-consistent theories, Wednesday)

2. Shell model
 - Basis construction
 - Solution of the eigenvalue problem
 - Matrix elements of transition operators
 - Effective nucleon-nucleon (NN) interactions
 (lecture of L. Bonneau on NN interaction, Thursday
 lecture of H. Molique on group theory, Friday morning)

3. No-Core Shell Model for Light Nuclei
 (lecture of R. Lazauskas on few-body problems, Tuesday)

4. Shell-model code ANTOINE (E. Caurier, F. Nowacki, IPHC Strasbourg)
 afternoon session

Lecture of A. P. Zuker “Beyond the Shell Model” on Friday afternoon
Structure of complex nuclei

- Nuclear charge (matter) density distribution $\rho_{ch}(\vec{r})$ ($\rho_m(\vec{r})$) with sharp radius $R \approx r_0A^{1/3}$.

- **Empirical evidence on the existence of an average potential and the corresponding shell structure**
 (From masses, nucleon separation energies, low-energy spectra, etc.)

- **Independent-particle motion near Fermi-level.**
 (From nucleon transfer reactions: nuclear mean-field with strong spin-orbit splitting and large shell gaps)

- **Pairing (superfluid behavior) at low excitation energy.**
 (S_n versus S_{2n}; two-nucleon spectra, comparison of spectra of even-even and even-odd, odd-even nuclei, etc.)

- **Low-lying multipole (quadrupole) modes, vibrational or rotational energy structures.**
 (Coulomb excitation; scattering of charge particles; heavy-ion fusion-evaporation reactions, etc)

The aim of the microscopic theory is to describe these motions starting from a NN force.
The Nuclear Shell Model
Non-relativistic Hamiltonian for A nucleons

\[\hat{H} = \sum_{i=1}^{A} \frac{\vec{p}_i^2}{2m} + \sum_{i<j=1}^{A} W(\vec{r}_i - \vec{r}_j) \]

\[\hat{H} = \sum_{i=1}^{A} \left[\frac{\vec{p}_i^2}{2m} + U(\vec{r}_i) \right] + \sum_{i<j=1}^{A} W(\vec{r}_i - \vec{r}_j) - \sum_{i=1}^{A} U(\vec{r}_i) , \]

Mean-field theories

Search for the most optimum mean-field potential starting from a given two-body interaction + correlations

Shell model

Schematic average potential + residual interaction
Starting point: antisymmetric product wave function

\[\psi(1, 2, \ldots, A) = \frac{1}{\sqrt{A!}} \left| \begin{array}{cccc} \phi_{\alpha_1}(1) & \phi_{\alpha_1}(2) & \cdots & \phi_{\alpha_1}(A) \\ \phi_{\alpha_2}(1) & \phi_{\alpha_2}(2) & \cdots & \phi_{\alpha_2}(A) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_{\alpha_A}(1) & \phi_{\alpha_A}(2) & \cdots & \phi_{\alpha_A}(A) \end{array} \right| \]

The best wave function is determined via a variational principle:

\[\delta \langle \psi | H | \psi \rangle = \langle \delta \psi | H | \psi \rangle = 0 \quad \text{with} \quad \int |\phi_{\alpha_i}(\vec{r})|^2 d\vec{r} = 1. \]
Self-consistent mean-field potential

Hartree-Fock equations

\[
\left(-\frac{\hbar^2}{2m} \Delta + U_H(\vec{r}) \right) \phi_i(\vec{r}) + \int U_F(\vec{r}, \vec{r}') \phi_i(\vec{r}') d\vec{r}' = \epsilon_i \phi_i(\vec{r})
\]

Direct (Hartree) term

\[
U_H(\vec{r}) = \sum_{b \in F} \int \phi_b^*(\vec{r}') W(\vec{r}, \vec{r}') \phi_b(\vec{r}') d\vec{r}'
\]

Exchange (Fock) term

\[
U_F(\vec{r}, \vec{r}') = \sum_{b \in F} \phi_b^*(\vec{r}) W(\vec{r}, \vec{r}') \phi_b(\vec{r}')
\]

Iterative solution of Hartree-Fock equations:

\[
\begin{align*}
\phi_i^{(0)}(\vec{r}) & \quad \Downarrow \quad U_H^{(0)}(\vec{r}), U_F^{(0)}(\vec{r}, \vec{r}') \\
\phi_i^{(1)}(\vec{r}), \epsilon_i^{(1)} & \quad \Downarrow \quad U_H^{(1)}(\vec{r}), U_F^{(1)}(\vec{r}, \vec{r}') \\
\vdots & \quad \Downarrow \quad \vdots \\
\phi_i^{(\text{HF})}(\vec{r}), \epsilon_i^{(\text{HF})} & \quad \Downarrow \quad U^{(\text{HF})}(\vec{r})
\end{align*}
\]
Self-consistent mean-field potential

Direct (Hartree) term

\[U_H(\vec{r}) = \sum_{b \in F} \int \phi^*_b(\vec{r}') W(\vec{r}, \vec{r}') \phi_b(\vec{r}') d\vec{r}' \]

\[U_H(\vec{r}) = \int \rho(\vec{r}') W(\vec{r}, \vec{r}') d\vec{r}' \]

\[\rho(\vec{r}) = \sum_{b \in F} |\phi_b(\vec{r})|^2 \]

Example: a delta-force

\[W(\vec{r}, \vec{r}') \propto \delta(\vec{r} - \vec{r}') \]

\[U_H(\vec{r}) \propto \rho(\vec{r}) \]
From the product HF wave function, a number of ground-state properties can be calculated:

\[\Psi_{HF}(1, 2, \ldots, A) = \frac{1}{\sqrt{A!}} A \prod_{i=1}^{A} \phi^{HF}_{\alpha_i}(i) \]

\[\langle \Psi_{HF} | \hat{H} | \Psi_{HF} \rangle = E_0 \]

\[\langle \Psi_{HF} | \sum_{i=1}^{A} \hat{r}_i^2 | \Psi_{HF} \rangle = \langle r^2 \rangle \]

\[\langle \Psi_{HF} | \sum_{i=1}^{A} \hat{\rho}(\vec{r}_i) | \Psi_{HF} \rangle = \rho(\vec{r}) \]

Application to open-shell nuclei and calculation excitation spectra require inclusion of correlations (pairing, etc) → beyond mean-field techniques (lecture of Ph. Quentin).
Shell model: energy matrix diagonalization

Non-relativistic Hamiltonian for A nucleons

\[\hat{H} = \sum_{i=1}^{A} \left[\frac{\vec{p}_i^2}{2m} + U(\vec{r}_i) \right] + \sum_{i<j=1}^{A} W(\vec{r}_i - \vec{r}_j) - \sum_{i=1}^{A} U(\vec{r}_i) \]

\(\hat{h}_i \)
\(\hat{V} \)

Construction of a basis from single-particle states

\[\hat{h}\phi_\alpha(\vec{r}) = \varepsilon_\alpha \phi_\alpha(\vec{r}) \quad \rightarrow \quad \{ \varepsilon_\alpha, \phi_\alpha(\vec{r}) \} \]

Spherical potential \(U(\vec{r}) = U(r) \): \(\alpha = \{ n_\alpha, l_\alpha, j_\alpha, m_\alpha \} \)

\[\phi_{nljm}(\vec{r}) = \frac{R_{nlj}(r)}{r} \left[Y_l(\theta, \varphi) \times \chi_{1/2}^m \right](j) \]

\[\sum_{m_l m_s} (l m_{1/2} m_s | j m) Y_{lm_l}(\theta, \varphi) \chi_{1/2}^m m_s \]
Single-particle wave functions

Radial differential equation

\[-\frac{\hbar^2}{2m} R''(r) + \frac{\hbar^2}{2m} \frac{l(l + 1)}{r^2} R(r) + [U(r)R(r) + a_{ls}f_{ls}(r)] R(r) = \varepsilon R(r)\]

Normalization condition

\[\int \left| \phi_{nlsjm}(\vec{r}) \right|^2 d\vec{r} = \sum_{m_l m_s m'_l m'_s} (l m_l \frac{1}{2} m_s jm)(l m'_l \frac{1}{2} m'_s jm) \int Y_{lm_l}(\theta, \phi) Y_{lm'_l}(\theta, \phi) d\Omega \times \langle \chi_{\frac{1}{2} m_s} | \chi_{\frac{1}{2} m'_s} \rangle \int_{0}^{\infty} |R_{nl}(r)|^2 dr = \int_{0}^{\infty} |R_{nl}(r)|^2 dr = 1\]

Parity

\[\hat{P}_{\phi_{nlsjm}(\vec{r})} = \hat{P}_{\phi_{nlsjm}(-\vec{r})} = (-1)^l \phi_{nlsjm}(\vec{r})\]
Examples of spherically-symmetric potentials

- Square-well potential + strong spin-orbit term

\[J_{l+1/2}(kr) \]

- Harmonic oscillator potential + orbital + spin-orbit term

\[(\nu r)^l e^{-\frac{\nu^2 r^2}{2}} L_{n-1}^{l+1/2} (\nu^2 r^2) \]

\(\nu = \sqrt{\frac{m\omega}{\hbar}} \)

N: degenerate in n, l

\[\text{ex. } N = 4 \]

\(s_{l=0} \) (100)
\(d_{l=2} \) (93)
\(g_{l=4} \) (75.5)
Harmonic oscillator potential

\[U(r) = \frac{m\omega^2 r^2}{2} + \alpha \vec{I} \cdot \vec{I} + \beta \vec{I} \cdot \vec{s} \]

\[\varepsilon_N = \hbar \omega \left(2n + l + \frac{3}{2} \right) = \hbar \omega \left(N + \frac{3}{2} \right) , \]

\[N = 0, 1, 2, \ldots, \]
\[l = N, N - 2, \ldots, 1 \text{ or } 0 \]
\[n = (N - l)/2 . \]

Harmonic oscillator potential possesses many **symmetry properties** which make it a preferable choice as a basis.

\[M. \ Mayer \ (1949) \]
\[O. \ Haxel, \ H. \ Jensen, \ H.E. \ Suess \ (1949) \]
Isospin

The idea of W. Heisenberg: proton and neutron are considered as two states of a nucleon.

\[\nu_{\pi \pi} \approx \nu_{\nu \nu} \approx \nu_{\pi \nu} \]

\[\pi = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \nu = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \]

Isospin operators (in analogy with the Pauli matrices):

\[\vec{t} = \frac{1}{2} \vec{\tau}, \quad \tau_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \tau_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \tau_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \]

Single-particle wave functions

\[\phi_{\nu}(r) = \phi(\vec{r}) \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \phi(\vec{r}) \theta_{t=1/2,m_t=1/2}, \]

\[\phi_{\pi}(r) = \phi(\vec{r}) \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \phi(\vec{r}) \theta_{t=1/2,m_t=-1/2}. \]
Isospin and classification of nuclear states

\[\hat{T} = \sum_{i=1}^{A} \hat{t}_i, \quad \hat{T}_z = \sum_{i=1}^{A} \hat{t}_{zi}. \]

Charge independent Hamiltonian: \[[\hat{H}, \hat{T}] = 0. \]

\[M_T = \frac{1}{2}(N - Z), \quad \frac{1}{2}(N - Z) \leq T \leq \frac{A}{2}. \]

Realistic situation

\[m_p \approx m_n; \quad \hat{V}_{\text{Coulomb}} = \sum_{i<j=1}^{Z} \frac{e^2}{|\vec{r}_i - \vec{r}_j|} \]

\[\hat{V}_{\text{Coulomb}} = \hat{V}(T=0) + \hat{V}(T=1) + \hat{V}(T=2). \]

\[E(T, M_T) = a(T) + b(T)M_T + c(T)M_T^2, \]
Two-particle wave function for identical fermions

Angular-momentum coupled state \((j_a \neq j_b)\)

\[
\Phi_{j_a(1)j_b(2);JM}(\vec{r}_1, \vec{r}_2) = \sum_{m_a m_b} (j_a m_a j_b m_b | J M) \phi_{j_a m_a}(\vec{r}_1) \phi_{j_b m_b}(\vec{r}_2) = \left[\phi_{j_a}(\vec{r}_1) \times \phi_{j_b}(\vec{r}_2) \right]^{(J)}_M
\]

\(j_a \equiv (n_{a|a}j_a), \ J = |j_a - j_b|, |j_a - j_b| + 1, \ldots, j_a + j_b, \) while \(M = -J, -J + 1, \ldots, J - 1, J.\)

Not antisymmetric with respect to permutation of two identical fermions!

Normalized and antisymmetric state

\[
\Phi_{j_\alpha j_\beta;JM}(\vec{r}_1, \vec{r}_2) = \frac{1}{N} \sum_{m_a m_b} (j_a m_a j_b m_b | J M) \left[\phi_{j_\alpha m_a}(\vec{r}_1) \phi_{j_\beta m_b}(\vec{r}_2) - \phi_{j_\beta m_b}(\vec{r}_1) \phi_{j_\alpha m_a}(\vec{r}_2) \right]
\]

Since the Clebsch-Gordan coefficients have the following property:

\[
(j_a m_a j_b m_b | J M) = (-1)^{j_a + j_b - J} (j_b m_b j_a m_a | J M)
\]

\[
\Phi_{j_\alpha j_\beta;JM}(\vec{r}_1, \vec{r}_2) = \frac{1}{N} \sum_{m_a m_b} [(j_a m_a j_b m_b | J M) \phi_{j_\alpha m_a}(\vec{r}_1) \phi_{j_\beta m_b}(\vec{r}_2)
- (-1)^{j_a + j_b - J} (j_b m_b j_a m_a | J M) \phi_{j_\beta m_b}(\vec{r}_1) \phi_{j_\alpha m_a}(\vec{r}_2)]
\]
Two-particle wave function for identical fermions

Normalized and antisymmetric state

\[j_a \neq j_b \]

\[\Phi_{j_a j_b;JM}(\vec{r}_1, \vec{r}_2) = \frac{1}{\sqrt{2}} \left\{ \left[\phi_{j_a}(\vec{r}_1) \times \phi_{j_b}(\vec{r}_2) \right]_M^{(J)} - (-1)^{j_a+j_b+J} \left[\phi_{j_b}(\vec{r}_1) \times \phi_{j_a}(\vec{r}_2) \right]_M^{(J)} \right\} \]

\[j_a \equiv (n_{al}a_ja), \; J = |j_a - j_b|, |j_a - j_b| + 1, \ldots, j_a + j_b, \text{ while } M = -J, -J + 1, \ldots, J - 1, J. \]

\[j_a = j_b = j \]

\[\Phi_{j^2;JM}(\vec{r}_1, \vec{r}_2) = \frac{1 + (-1)^J}{2} \left[\phi_j(\vec{r}_1) \times \phi_j(\vec{r}_2) \right]_M^{(J)} \]

Important consequence: if \(j_a = j_b = j \), then \(J = 0, 2, 4, \ldots, 2j - 1 \)

\[(\nu 0d_{5/2})^2 : \; J = 0, 2, 4 \]
Two-particle wave function for protons and neutrons

\(j_a \neq j_b \)

\[
\Phi_{j_a j_b; JM TM_T} (\vec{r}_1, \vec{r}_2) = \left\{ \left[\phi_{j_a} (\vec{r}_1) \times \phi_{j_b} (\vec{r}_2) \right]^M_M + (-1)^{j_a + j_b + J + T} \left[\phi_{j_b} (\vec{r}_1) \times \phi_{j_a} (\vec{r}_2) \right]^M_M \right\} \frac{\Theta_{TM_T}}{\sqrt{2}}
\]

\[
\begin{align*}
\Theta_{1,1} &= \theta_{1/2,1/2}(1) \theta_{1/2,1/2}(2), \\
\Theta_{1,-1} &= \theta_{1/2,-1/2}(1) \theta_{1/2,-1/2}(2), \\
\Theta_{1,0} &= \left[\theta_{1/2,1/2}(1) \theta_{1/2,-1/2}(2) + \theta_{1/2,-1/2}(1) \theta_{1/2,1/2}(2) \right] / \sqrt{2}, \\
\Theta_{0,0} &= \left[\theta_{1/2,1/2}(1) \theta_{1/2,-1/2}(2) - \theta_{1/2,-1/2}(1) \theta_{1/2,1/2}(2) \right] / \sqrt{2},
\end{align*}
\]

\(j_a = j_b = j \)

\[
\Phi_{j^2; JM TM_T} (\vec{r}_1, \vec{r}_2) = \frac{1 - (-1)^{J + T}}{2} \left[\phi_j (\vec{r}_1) \times \phi_j (\vec{r}_2) \right]^M_M \Theta_{TM_T}
\]

Remark: if \(j_a = j_b = j \), then \((J + T) \) is odd!

\[
\begin{align*}
(\nu 0 d_{5/2})^2 : & \quad J = 0, 2, 4 \\
(\nu 0 d_{5/2} \pi 0 d_{5/2}) : & \quad J = 0, 2, 4 (T = 1); \quad J = 1, 3, 5 (T = 0)
\end{align*}
\]
Many-particle wave function: $J(T)$-coupled states.

J-coupled state

Consider N identical fermions in a single-j shell. We construct a totally antisymmetric and coupled to good J N-nucleon wave function from a set of totally antisymmetric $(N - 1)$-nucleon wave functions coupled to all possible J':

$$
\Phi^{j(N)}_{\chi J M}(\vec{r}_1, \ldots, \vec{r}_N) = \sum_{\chi' J'} \left\{ j^{N-1}(\chi' J')j \right\} j^{N} \chi J \Phi^{j(N - 1)}_{\chi' J' M'}(\vec{r}_1, \ldots, \vec{r}_{N-1}) \phi_{j m}(\vec{r}_N),
$$

where

$$
\left\{ j^{N-1}(\chi' J')j \right\} j^{N} \chi J
$$

are one-particle coefficients of fractional parentage (cfp's)

Repeat this procedure for N' particles in j' orbital and so on. Construct thus basis states by consecutive coupling of angular momenta and antisymmetrization.
Many-particle wave function: \(m \)-scheme basis

Slater determinants

\[
\Phi_\alpha(1, 2, \ldots, A) = \frac{1}{\sqrt{A!}} \begin{vmatrix}
\phi_{\alpha_1}(\vec{r}_1) & \phi_{\alpha_1}(\vec{r}_2) & \cdots & \phi_{\alpha_1}(\vec{r}_A) \\
\phi_{\alpha_2}(\vec{r}_1) & \phi_{\alpha_2}(\vec{r}_2) & \cdots & \phi_{\alpha_2}(\vec{r}_A) \\
\vdots & \vdots & \ddots & \vdots \\
\phi_{\alpha_A}(\vec{r}_1) & \phi_{\alpha_A}(\vec{r}_2) & \cdots & \phi_{\alpha_A}(\vec{r}_A)
\end{vmatrix}
\]

where \(\alpha_i = (n_i, l_i, j_i, m_i) \) and \(\alpha \) stores a set of single-particle configurations \(\{\alpha_1, \alpha_2, \ldots, \alpha_A\} \)

\[
M = \sum_{i=1}^{A} m_i
\]

Projection on \(J \) can be performed.
Consider 2 neutrons in 0\textit{f}_{7/2} orbital.

- Write down the basis in \textit{J}-coupled form.
- Write down the basis in \textit{m}-scheme.
- How many different \textit{J}-states exist in this model space?
Basis construction

- Basis in J-coupled scheme:

$$|(0f_{7/2})^2; J, T = 1\rangle J = 0, 2, 4, 6$$
There are 4 different J-states.
Solution of a many-body Schrödinger equation

Construct a basis in the valence space for each J

$$\Phi_k^{(J)} = \left\{ (j_a)^{n_a}(j_b)^{n_b} \right\}^{(J)}_k, \quad \hat{H}^{(0)}\Phi_k = E_k^{(0)}\Phi_k$$

Expand unknown wave function in terms of basis functions

$$\psi_p = \sum_{k=1}^{n} a_{kp}\Phi_k \quad \Rightarrow \quad \hat{H}\psi_p = E_p\psi_p \quad (\hat{H} = \hat{H}^{(0)} + \hat{V})$$

Multiplying by $\langle \Phi_l |$, we get a system of equations

$$\sum_{k=1}^{n} H_{lk} a_{kp} = E_p a_{lp}$$

\Rightarrow diagonalization of the matrix

$$H_{lk} = \langle \Phi_l | \hat{H} | \Phi_k \rangle = E_k^{(0)}\delta_{lk} + V_{lk}$$

Calculate Hamiltonian matrix $H_{ij} = \langle \phi_j | H | \phi_i \rangle$

— Diagonalize to obtain eigenvalues
Basis dimension and choice of the model space

Basis dimension grows quickly

\[\text{dim} \approx \left(\frac{\Omega_{\pi}}{N_{\pi}} \right) \left(\frac{\Omega_{\nu}}{N_{\nu}} \right) \]

Model space: a few valence orbitals beyond the closed-shell core.

Example: \(^{60}\text{Zn}\) in \(pf\)-shell

\[\text{dim}(^{60}\text{Zn}) = \binom{20}{10} \binom{20}{10} \approx 3.4 \times 10^{10}. \]
Practical shell-model for 18O in sd-shell

$$\hat{H} = \hat{H}^{(0)} + \hat{V} = \hat{h}(1) + \hat{h}(2) + \hat{V}$$

Single-particle energies:

$$\varepsilon(0d_{5/2}) = E_B(^{17}\text{O}_9) - E_B(^{16}\text{O}_8) = -4.143 \text{ MeV}$$
$$\varepsilon(1s_{1/2}) = \varepsilon(0d_{5/2}) + E_{ex}(^{17}\text{O}; \, ^{1/2}_1^+_1) = -3.273 \text{ MeV}$$
$$\varepsilon(0d_{3/2}) = \varepsilon(0d_{5/2}) + E_{ex}(^{17}\text{O}; \, ^{3/2}_1^+_1) = 0.942 \text{ MeV}$$

Basis of states for each (JT) denoted as $|j_a j_b \rangle_{JT}$:

$$|\Phi_1(0^+)\rangle \equiv |d_{5/2}^2\rangle_{01}$$
$$|\Phi_2(0^+)\rangle \equiv |s_{1/2}^2\rangle_{01}$$
$$|\Phi_3(0^+)\rangle \equiv |d_{3/2}^2\rangle_{01}$$

$$0^+, T = 1 : \Rightarrow \begin{pmatrix} H_{11} & H_{12} & H_{13} \\ H_{21} & H_{22} & H_{23} \\ H_{31} & H_{32} & H_{33} \end{pmatrix}$$

$$|\Phi_1(1^+)\rangle \equiv |d_{5/2} d_{3/2}\rangle_{11}$$
$$|\Phi_2(1^+)\rangle \equiv |s_{1/2} d_{3/2}\rangle_{11}$$

$$1^+, T = 1 : \Rightarrow \begin{pmatrix} H_{11} & H_{12} \\ H_{21} & H_{22} \end{pmatrix}$$

and so on for $J = 2, 3, 4$.
Exercise 2: Energies of 0^+ states in 18O

Diagonal Two-body matrix elements (TBMEs)

<table>
<thead>
<tr>
<th>Term</th>
<th>Expression</th>
<th>Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_{11}</td>
<td>$2\varepsilon(d_{5/2}) + \langle d_{5/2}^2</td>
<td>V</td>
</tr>
<tr>
<td>H_{22}</td>
<td>$2\varepsilon(s_{1/2}) + \langle s_{1/2}^2</td>
<td>V</td>
</tr>
<tr>
<td>H_{33}</td>
<td>$2\varepsilon(d_{3/2}) + \langle d_{3/2}^2</td>
<td>V</td>
</tr>
</tbody>
</table>

Non-diagonal TBMEs

<table>
<thead>
<tr>
<th>Term</th>
<th>Expression</th>
<th>Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H_{12} = H_{21}$</td>
<td>$\langle d_{5/2}^2</td>
<td>V</td>
</tr>
<tr>
<td>$H_{23} = H_{32}$</td>
<td>$\langle s_{1/2}^2</td>
<td>V</td>
</tr>
<tr>
<td>$H_{13} = H_{31}$</td>
<td>$\langle d_{5/2}^2</td>
<td>V</td>
</tr>
</tbody>
</table>
Practical shell-model for 18O in sd-shell

Eigenvalues (g.s. and two excited 0^+ states):

- $E(0^+_1) = -12.602$ MeV
- $E(0^+_2) = -8.097$ MeV
- $E(0^+_3) = 0.622$ MeV
- $E_{gs}(0^+_1) = 0$ MeV
- $E_{ex}(0^+_2) = 4.505$ MeV
- $E_{ex}(0^+_3) = 13.224$ MeV

Eigenstates:

- $|\psi(0^+_1)\rangle = a_{11} |d_{5/2}\rangle_{01} + a_{21} |s_{1/2}\rangle_{01} + a_{31} |d_{3/2}\rangle_{01}$
- $|\psi(0^+_2)\rangle = a_{12} |d_{5/2}\rangle_{01} + a_{22} |s_{1/2}\rangle_{01} + a_{32} |d_{3/2}\rangle_{01}$
- $|\psi(0^+_3)\rangle = a_{13} |d_{5/2}\rangle_{01} + a_{23} |s_{1/2}\rangle_{01} + a_{33} |d_{3/2}\rangle_{01}$

$$\sum_k a_{kp}^2 = 1$$

The full spectrum:

Repeat the same procedure for $J^\pi = 1^+, 2^+, 3^+, 4^+$.
Shell-model codes

\textbf{m-scheme codes}

- ANTOINE (E. Caurier)

 \url{http://www.iphc.cnrs.fr/nutheo/code_antoine/menu.html}
- NuShellX@MSU (W. Rae, B. A. Brown)
- MSHELL (T. Mizusaki)
- REDSTICK (W. E. Ormand, C. Johnson)
- ...

\textbf{J-coupled codes}

- NATHAN (E. Caurier, F. Nowacki)
- DUPSM (Novoselsky, Vallières)
- Ritsschil (Zwarts)
- ...

\textbf{Features}

- Matrix dimension: $\sim 10^{10}$ and beyond
- Lanczos diagonalization algorithm
- Calculation of the matrix elements on-the-fly
Lanczos algorithm

Creation of a tri-diagonal matrix:

\[
\begin{align*}
\hat{H}|1\rangle &= E_{11}|1\rangle + E_{12}|2\rangle \\
\hat{H}|2\rangle &= E_{21}|1\rangle + E_{22}|2\rangle + E_{23}|3\rangle \\
&\quad \ldots
\end{align*}
\]

Matrix elements:

\[
\begin{align*}
E_{11} &= \langle 1|\hat{H}|1\rangle \\
E_{12} &= (\hat{H} - E_{11})|1\rangle \\
E_{21} &= E_{12}, \quad E_{22} = \langle 2|\hat{H}|2\rangle \\
E_{23} &= (\hat{H} - E_{22})|2\rangle - E_{21}|1\rangle \\
&\quad \ldots
\end{align*}
\]

How to get the lowest states converged:

\[
\begin{pmatrix}
E_{11} & E_{12} \\
E_{21} & E_{22}
\end{pmatrix}
\Rightarrow
\begin{pmatrix}
E_{11} & E_{12} & 0 \\
E_{21} & E_{22} & E_{23} \\
0 & E_{32} & E_{33}
\end{pmatrix}
\Rightarrow
\begin{pmatrix}
E_{11} & E_{12} & 0 & 0 \\
E_{21} & E_{22} & E_{23} & 0 \\
0 & E_{32} & E_{33} & E_{34} \\
0 & 0 & E_{43} & E_{44}
\end{pmatrix}
\Rightarrow \ldots
\]

You may need only a few iterations to get the lowest state of a \((10^3 \times 10^3)\) matrix converged!
Calculation of observables

General scheme:

- Construct the basis: $|\Phi_k\rangle$
- Expand the wave function: $|\Psi_p\rangle = \sum_k a_{kp} |\Phi_k\rangle$ and compute the Hamiltonian matrix $\{H_{lk}\}$.
- Solution of the Shrödinger equation by Hamiltonian matrix diagonalization: $\{H_{lk}\} \Rightarrow E_p, |\Psi_p\rangle$ (coefficients a_{kp})
- Calculation of matrix elements of the operators

$$T_{fi} \propto |\langle \Psi_f | \hat{O} | \Psi_i \rangle|^2$$

Electroweak operators:

$$\hat{O}(E, LM) = \sum_{k=1}^{A} e(k) r^L(k) Y_{LM}(\hat{r}(k))$$

$$\hat{O}(M, 1M) = \sum_{k=1}^{A} \mu_n (g_s(k) \bar{s}(k) + g_l(k) \bar{l}(k))$$

$$\hat{O}(F) = \sum_{k=1}^{A} \tau_{\pm}(k), \quad \hat{O}(GT) = \sum_{k=1}^{A} \bar{\sigma}(k) \tau_{\pm}(k) \ldots$$
Exercise 3

Electromagnetic transitions in ^{17}O

Calculate the $B(E2; \frac{1}{2}^+_1 \rightarrow \frac{5}{2}^+_g)\text{ in }^{17}\text{O}$ modeled as a valence neutron in a $1s0d$ shell beyond the ^{16}O closed-shell core. We take:

$$\int_0^\infty R_{1s\frac{1}{2}}(r)r^2R_{0d\frac{5}{2}}(r)dr \approx 12\text{ fm}^2.$$

Compare your result to experimental value $B_{\text{exp}}(E2) = 6.3\text{ e}^2\text{.fm}^4$. What can you conclude?
Solution to exercise 3

Electromagnetic transitions in ^{17}O

The single-particle electric multipole operator reads

$$\hat{O}(E, 2M) = e r^2 Y_{2M}(\theta, \phi),$$

The reduced probability of the $\mathcal{E}L$-transition from the initial to the final state is

$$B(\mathcal{E}L; J_i \rightarrow J_f) = \frac{1}{2J_i + 1} |\langle J_f || O(\mathcal{E}L) || J_i \rangle|^2.$$

In our case, there is one valence particle: $J_i = (1s_{1/2})$, $J_f = (0d_{5/2})$.

$$B(\mathcal{E}2; 1/2^+ \rightarrow 5/2^+) = \frac{1}{2} |\langle 0d_{5/2} || \hat{O}(\mathcal{E}2) || 1s_{1/2} \rangle|^2 =$$

$$\frac{1}{2} |\langle n_f=0, l_f=2, s_f=1/2, j_f=5/2 || e r^2 Y_2(\theta, \phi) || n_i=1, l_i=0, s_i=1/2, j_i=1/2 \rangle|^2 =$$

$$\frac{1}{2} e^2 \left(\int R_{0d_{5/2}}^*(r) r^2 R_{1s_{1/2}}(r) dr \right)^2 |\langle 2 \frac{1}{2}; 5 \frac{1}{2} || Y_2(\theta, \phi) || 0 \frac{1}{2}; 1 \frac{1}{2} \rangle|^2.$$

$$B(\mathcal{E}L; j_i \rightarrow j_f) = e^2 \frac{1}{4\pi} (2j_f + 1)(2l_i + 1)(2L + 1)(l_i0L0 || l_f0)^2 \left\{ \frac{1}{2} L \begin{array}{c} j_f \ j_i \\ l_f \ l_i \end{array} \right\}^2.$$
Electromagnetic transitions in ^{17}O (continued)

$$B(E2; 1/2^+ \rightarrow 5/2^+) = e^2 \frac{1}{4\pi} \langle r^2 \rangle^2 6 \times 5(0020|20)^2 \begin{pmatrix} 1/2 & 2 & 5/2 \\ 2 & 1/2 & 0 \end{pmatrix}^2 =$$

$$= 34.4 e^2 . \text{fm}^4 .$$

Experimental value $B_{\text{exp}}(E2; 1/2^+ \rightarrow 5/2^+) = 6.3 e^2 . \text{fm}^4 .$

This means that the neutron should have an effective charge: $\tilde{e}_n \approx 0.43 e.$ because we work in a severely restricted model space (one valence nucleon !).

Standard effective $E2$ and $M1$ operators

$$\tilde{e}_\pi \approx 1.5 e, \quad \tilde{e}_\nu \approx 0.5 e$$

$$\tilde{g}_s(\pi) \approx 0.7 g_s(\pi), \quad \tilde{g}_l(\pi) = g_l(\pi) = 1$$

$$\tilde{g}_s(\nu) \approx 0.7 g_s(\nu), \quad \tilde{g}_l(\nu) = g_l(\nu) = 0$$

N. A. Smirnova
The Nuclear Shell Model
Nuclear many-body problem

Non-relativistic Hamiltonian for A nucleons

\[\hat{H} = \sum_{i=1}^{A} \frac{\hat{p}_i^2}{2m} + \sum_{i<j}^{A} \hat{W}(\vec{r}_i - \vec{r}_j) \]

\[\hat{H} = \sum_{i=1}^{A} \left[\frac{\hat{p}_i^2}{2m} + U(\vec{r}_i) \right] + \sum_{i<j}^{A} W(\vec{r}_i - \vec{r}_j) - \sum_{i=1}^{A} U(\vec{r}_i) \]

\[\hat{H} = \hat{H}^{(0)} + \hat{V} \]

The residual interaction is assumed to have a two-body form

\[\hat{V} = \sum_{i<j=1}^{A} \hat{V}(\vec{r}_i - \vec{r}_j) \]

One and two-body Hamiltonian

\[\hat{H} = \sum_{i=1}^{A} \hat{h}(\vec{r}_i) + \sum_{i<j=1}^{A} \hat{V}(\vec{r}_i - \vec{r}_j) \]
Creation and annihilation operators

\[|\alpha\rangle = a_\alpha^\dagger |0\rangle \quad \langle \alpha | = \langle 0 | a_\alpha \]

Wave function of a fermion in a quantum state \(\alpha \) in coordinate space:

\[\langle \vec{r} | \alpha \rangle = \phi_\alpha (\vec{r}) \]

(Anti-)commutation relations:

\[
\begin{align*}
\{ a_\alpha^\dagger, a_\beta \} &= a_\alpha^\dagger a_\beta + a_\beta a_\alpha^\dagger = \delta_{\alpha\beta} \\
\{ a_\alpha^\dagger, a_\beta^\dagger \} &= \{ a_\alpha, a_\beta \} = 0
\end{align*}
\]

Normalized and antisymmetric \(A \)-fermion state:

\[|\alpha_1 \alpha_2 \ldots \alpha_A \rangle = a_{\alpha_A}^\dagger a_{\alpha_{A-1}}^\dagger \ldots a_{\alpha_2}^\dagger a_{\alpha_1}^\dagger |0\rangle \]
Operators in the occupation-number formalism

One-body operators

\[\hat{O} = \sum_{k=1}^{A} \hat{O}(\vec{r}_k) \]

\[\langle \alpha | \hat{O} | \beta \rangle = \int \phi_{\alpha}^*(\vec{r}) \hat{O}(\vec{r}) \phi_{\beta}(\vec{r}) d\vec{r} \]

Second-quantized form of the one-body operator \(\hat{O} \):

\[\hat{O} = \sum_{\alpha \beta} \langle \alpha | \hat{O} | \beta \rangle a_{\alpha}^\dagger a_{\beta} \]

For example, the number operator reads

\[\hat{N} = \sum_{\alpha \beta} \langle \alpha | \hat{1} | \beta \rangle a_{\alpha}^\dagger a_{\beta} = \sum_{\alpha} a_{\alpha}^\dagger a_{\alpha} \]
Operators in the occupation-number formalism

Symmetric two-body operator acting on an A-fermion system

\[\hat{T} = \sum_{j<k=1}^{A} \hat{T}(\vec{r}_k, \vec{r}_j) \]

\[
\langle \alpha\beta | \hat{T} | \gamma\delta \rangle = \int \phi^*_\alpha(\vec{r}_1)\phi^*_\beta(\vec{r}_2) \hat{T}(\vec{r}_1, \vec{r}_2) \left(1 - \hat{P}_{12} \right) \phi_\gamma(\vec{r}_1)\phi_\delta(\vec{r}_2) d\vec{r}_1 d\vec{r}_2 ,
\]

Second-quantized form of the two-body operator \hat{T}:

\[\hat{T} = \frac{1}{4} \sum_{\alpha\beta\gamma\delta} \langle \alpha\beta | \hat{T} | \gamma\delta \rangle a^\dagger_\alpha a^\dagger_\beta a_\delta a_\gamma \]
Nuclear many-body Hamiltonian in the occupation-number formalism

Non-relativistic Hamiltonian for A nucleons

$$\hat{H} = \sum_{i=1}^{A} \hat{h}(\vec{r}_i) + \sum_{i<j=1}^{A} \hat{V}(\vec{r}_i - \vec{r}_j) = \hat{H}^{(0)} + \hat{V}$$

$$\downarrow$$

$$\hat{H} = \sum_{\alpha} \varepsilon_{\alpha} a^+_\alpha a_\alpha + \frac{1}{4} \sum_{\alpha \beta \gamma \delta} \langle \alpha \beta | V | \gamma \delta \rangle a^+_\alpha a^+_\beta a_\delta a_\gamma ,$$

\begin{align*}
\text{one-body term} & \quad \text{two-body term}
\end{align*}

Two-body term in a JT-coupled form

$$\hat{V} = -\frac{1}{4} \sum_{j_\alpha j_\beta \gamma j_\delta} \langle j_\alpha j_\beta | V | j_\gamma j_\delta \rangle_{JT} \sqrt{(1 + \delta_{\alpha \beta})(1 + \delta_{\gamma \delta})}$$

$$\left[\hat{a}^+_j a^+_i \right]^{(JT)} \left[\tilde{a}_j \tilde{a}_i \right]^{(JT)}^{(00)}$$
Necessary ingredients

Single-particle energies

\[\varepsilon_\alpha \]

from experimental spectra of \(A_{\text{core}} \) plus a neutron or a proton

Two-body matrix elements (TBMEs)

\[\langle j_\alpha j_\beta | V | j_\gamma j_\delta \rangle_{JT} \]

from theory?
Bare nucleon-nucleon (NN) interaction

The NN interaction between two nucleons in the vacuum: NN scattering data, deuteron bound states properties.

Elastic scattering in momentum space (Yukawa)

\[V_{\pi NN}(1, 2) = \frac{g^2_{\pi NN}}{4M^2} \frac{(\vec{\sigma}_1 \cdot \vec{q}) (\vec{\sigma}_2 \cdot \vec{q})}{\vec{q}^2 + m^2_\pi} \]

Potential (Fourier transform) in coordinate space

\[V_{\pi NN}^{OPEP}(1, 2) = \frac{g^2_{\pi NN}}{4M^2} \frac{m^3_\pi}{12} \left\{ \vec{\sigma}_1 \cdot \vec{\sigma}_2 \right\}
\quad + \left(1 + \frac{3}{m_\pi r} + \frac{3}{(m_\pi r)^2} \right) \left(3\vec{\sigma}_1 \cdot \vec{r} \vec{\sigma}_2 \cdot \vec{r} - \vec{\sigma}_1 \cdot \vec{\sigma}_2 \right) \right\} \frac{e^{-m_\pi r}}{m_\pi r} \]

Meson-exchange theories of NN potential: high-precision potentials (CD-Bonn, AV18, etc)
Concept of effective interaction (operators)

Effective in-medium nucleon-nucleon interaction

- In-medium effects (renormalization of the hard core)
- Truncated model space

\[\hat{H}\Psi = (\hat{H}^{(0)} + \hat{V})\Psi = E\Psi, \]

True wave function:

\[\Psi = \sum_{k=1}^{\infty} a_k \Phi_k. \]

Wave function in a model space:

\[\Psi' = \sum_{k=1}^{M} a_k \Phi_k. \]

\[\langle \Psi' | \hat{H}_{\text{eff}} | \Psi' \rangle = \langle \Psi | \hat{H} | \Psi \rangle = E \]

\[\langle \Psi' | \hat{O}_{\text{eff}} | \Psi' \rangle = \langle \Psi | \hat{O} | \Psi \rangle \]

Approaches to the problem: **phenomenological** or **microscopic**.
Effective Interaction

Practical approaches to effective interaction

- **Schematic** interaction (parametrized interaction between two nucleons in a nuclear medium)

- **Phenomenological** interaction (Fit of TBME’s to energy levels of nuclei to be described within the chosen model space)

- **Microscopic** interaction (derived from a bare NN-force)
A few parameters (interaction strengths) are fitted to reproduce energy levels in a certain region of (a few) neighboring nuclei ⇒ local description only!
Exercise 4: TBMEs of the δ-force

Multipole expansion of the delta-function

$$V(1, 2) = -V_0 \delta(\vec{r}_1 - \vec{r}_2),$$

$$\delta(\vec{r}_1 - \vec{r}_2) = \sum_k \frac{\delta(r_1 - r_2)}{r_1 r_2} \frac{2k + 1}{4\pi} P_k(\cos \theta_{12})$$

Diagonal TBMEs between normalized and antisymmetric states

$$\langle j_1 j_2 | V | j_1 j_2 \rangle_{JT} = I (2j_1 + 1)(2j_2 + 1) \left(\begin{array}{ccc} j_1 & j_2 & J \\ \frac{1}{2} & -\frac{1}{2} & 0 \end{array} \right)^2 \frac{1 + (-1)^{l_1 + l_2 + J}}{2}$$

$$\langle j^2 | V | j^2 \rangle_{JT} = I (2j + 1)^2 \left(\begin{array}{ccc} j & j & J \\ \frac{1}{2} & -\frac{1}{2} & 0 \end{array} \right)^2 , \quad \text{if } j_1 = j_2 = j$$

$$I = \frac{1}{4\pi} \int_0^\infty \frac{1}{r^2} [R_{n_1 l_1}(r) R_{n_2 l_2}(r)]^2 \, dr$$
Example 1: 210Pb in $(\nu 0 h_{9/2})^2$

$$V_{\delta}(1,2) = -V_0 \delta(\vec{r}_1 - \vec{r}_2)$$

$$V_{\text{pairing}}(1,2) = -G \hat{S}_+ \cdot \hat{S}_-$$

$$\langle j_a^2 | V_{\text{pairing}}(1,2) | j_b^2 \rangle_{01} = -(-1)^{l_a+l_b} \frac{1}{2} G \sqrt{(2j_a+1)(2j_b+1)}$$

![Graphical representation of energy levels and transitions in 210Pb]
Example 2: ^{20}Ne and SU(3) model of Elliott

\[\hat{H} = \sum_{i=1}^{A} \left[-\frac{p_i^2}{2m} + \frac{1}{2} m\omega^2 r_i^2 \right] - \chi Q \cdot Q \]

Q is an algebraic quadrupole operator (Q_μ, L_μ are SU(3) generators) J.P.Elliott (1958)

Group-theoretical classification of nuclear states (analytical solution) — see lecture of H. Molique.

Rotational classification of nuclear states as mixing of many spherical configurations

N. A. Smirnova | The Nuclear Shell Model
Empirical interaction (least-squares-fit method)

All TBME's $\langle j_{ab} | V | j_{cd} \rangle_{JT}$ are considered as free parameters!

Examples:
- $0p$-shell: $^4\text{He} - ^{16}\text{O}$ (15 TBME's) Cohen, Kurath (1965)
- $1s0d$-shell: $^{16}\text{O} - ^{40}\text{Ca}$ (63 TBME's) Brown, Wildenthal (1988)
- $1p0f$-shell: $^{40}\text{Ca} - ^{80}\text{Zr}$ (195 TBME's) Honma et al (2002, 2004)
A bare NN potential (CD-Bonn, AV18, chiral N3LO, etc) requires regularization and modification to be applied for many-body calculations in a restricted model space.

Renormalization schemes (*see lecture of L. Bonneau*)

- G matrix followed by the many-body perturbation theory
- $V_{\text{low}-k}$
- SRG (IM-SRG)
- Okubo-Lee-Suzuki transformation

Successful, but still lack precision of the empirical interactions, mainly due to behavior of centroids. One of possible reasons: absence of 3N forces (*A. Poves, A.P. Zuker, 1981; A.P. Zuker, 2003*)
Modern nuclear shell model and beyond

Interacting shell model

Oscillator-based shell model with accurate realistic interactions formulated in one or two harmonic-oscillator shells model spaces (large-scale diagonalization).

- Detailed information on individual states and transitions at low energies
- Conservation of principal symmetries

Numerous applications to nuclear structure, weak interaction and astrophysics

E. Caurier et al, Rev. Mod. Phys. 77, 427 (2005)
State-of-the-art calculations: backbending in ^{48}Cr

For $J<10$:

$$E_J \sim J(J + 1)$$

$$Q_0 = \frac{(J + 1)(2J + 3)}{3K^2 - J(J + 1)} Q_{\text{spec}}(J), \ K \neq 1$$

$$B(E2; J \rightarrow J - 2) = \frac{5}{16\pi} e^2 |(JK20 | J - 2, K)^2 Q_0^2$$

$J<10$: collective rotation

$J=10-12$: backbending phenomenon (competition between rotation and alignment of $0f_{7/2}$ particles)

$J>12$: spherical states

KB3 (semi-empirical interaction in pf-shell model space)

Strasbourg-Madrid

E. Caurier et al, Rev. Mod. Phys. 77 (2005) 427
Intruder np-nh configurations can lead even to superdeformation!

$[\text{sd}]^{16}[\text{pf}]^0 - 0\text{p}0\text{h} -$ spherical configuration

$[\text{sd}]^{12}[\text{pf}]^4 - 4\text{p}4\text{h} -$ deformed configuration

State-of-the-art calculations: mirror bands in $A = 51$

S. Lenzi, A. Zuker, E. Caurier et al
Non-core shell model

Non-relativistic Hamiltonian for A nucleons in many $N\hbar\Omega$ harmonic oscillator space

$$\hat{H} = \sum_{i=1}^{A} \frac{\vec{p}_i^2}{2m} + \sum_{i<j=1}^{A} W(\vec{r}_i - \vec{r}_j)$$

Problem: excitation of the center-of-mass of the system.

Center-of-mass coordinates

$$\vec{R} = \frac{1}{A} \sum_{i=1}^{A} \vec{r}_i ; \quad \vec{P} = \sum_{i=1}^{A} \vec{p}_i$$

Translational-invariant Hamiltonian

$$\hat{H} = \sum_{i=1}^{A} \frac{\vec{p}_i^2}{2m} - \frac{\vec{P}^2}{2mA} + \sum_{i<j=1}^{A} W(\vec{r}_i - \vec{r}_j)$$
Separation of the harmonic oscillator Hamiltonian into center-of-mass and intrinsic Hamiltonians

\[H_{ho} = \sum_{i=1}^{A} \left[\frac{\vec{p}_i^2}{2m} + \frac{m\Omega^2 \vec{r}_i^2}{2} \right] \]

\[= \frac{1}{2mA} \sum_{i<j=1}^{A} (\vec{p}_i - \vec{p}_j)^2 + \frac{m\Omega^2}{2A} \sum_{i<j=1}^{A} (\vec{r}_i - \vec{r}_j)^2 + \left(\frac{\vec{P}^2}{2mA} + \frac{mA\Omega^2 \vec{R}^2}{2} \right) \]

\[\hat{H}_{int} \]

\[\hat{H}_{CoM} \]
No-Core Shell Model

Translational-invariant Hamiltonian

\[\hat{H} = \sum_{i=1}^{A} \left[\frac{\vec{p}_i^2}{2m} + \frac{m\Omega^2 \vec{r}_i^2}{2} \right] - \frac{\vec{P}^2}{2mA} + \sum_{i<j=1}^{A} W(\vec{r}_i - \vec{r}_j) - \sum_{i=1}^{A} \frac{m\Omega^2 \vec{r}_i^2}{2} \]

\[\hat{H} = \sum_{i=1}^{A} \left[\frac{\vec{p}_i^2}{2m} + \frac{m\Omega^2 \vec{r}_i^2}{2} \right] + \sum_{i<j=1}^{A} W(\vec{r}_i - \vec{r}_j) - \frac{m\Omega^2}{2A} \sum_{i<j=1}^{A} (\vec{r}_i - \vec{r}_j)^2 - \hat{H}_{\text{CoM}} \]

Separation of the Center-of-Mass motion

\[\hat{H}^\Omega = \hat{H} + \beta \left(\hat{H}_{\text{CoM}} - \frac{3}{2} \hbar\Omega \right) \]

See lecture of R. Lazauskas for alternative methods.
The Nuclear Shell Model

- The Nuclear Shell Model is a powerful microscopic approach to nuclear structure
- Very good description of energies and transitions at low energies
- High predictive power.
- Important applications:
 - structure of nuclei far from stability (proton rich or neutron-rich nuclei)
 - calculation of weak interaction processes on nuclei for the tests of the Standard Model
 - calculation of the nuclear structure input (masses, half-lives, reaction rates, etc) relevant for astrophysical simulations (r-processes, rp-process, etc..)
Some references on the Shell model theory

Books

Reviews