Status of \((n,xn \gamma)\) reaction cross section measurements on actinides with the GRAPhEME set-up at GELINA

M. Kerveno, A. Bacquias, Ph. Dessagne, G. Henning, G. Rudolf - CNRS/IPHC
M. Nyman, A. J. M. Plompen - JRC/IRMM
C. Borcea, A. Negret, A. Olacel - IFIN-HH
General context

Fuel cycle

Systems, scenario

Gen IV reactor systems

EXFOR

ENDF

JENDL

NUCLEAR DATA

Reprocessing

Safety

Dismantling

Nuclear reaction codes

ACCURACY
General context: \((n,xn)\) reactions

\((n,xn)\) reaction in reactor core
- Energy loss mechanism
- Neutron multiplication
- \(\gamma\) production
- Production of radioactive isotopes

\(^{238}\text{U}(n,n')\) XS uncertainty
- from 5% to 20%

\(^{238}\text{U}(n,n')\) problematic

GEN-3 reactors:
- large sizes \(\Rightarrow\) radial power sensitive to ND

GEN-4 reactors:
- fast neutron spectrum \(\Rightarrow\) \(k_{\text{eff}}\) sensitive to ND

Target accuracy on \(^{238}\text{U}(n,n')\):
- PWR: \(\pm 10\%\)
- SFR: \(\pm 5\%\)
General context: experimental method

Prompt γ-ray spectroscopy method

Theoretical model

Spectroscopic parameters

Measured \((n,xn \, \gamma)\) cross sections

Level production and total \((n,xn)\) cross sections

Powerful method which provides a lot of cross sections:
- \((n,xn \, \gamma)\)
- Level production
- Total

Project:
- Experimental study of the neutron inelastic and \((n,xn)\) scattering by the prompt \(\gamma\)-ray spectroscopy method,
- 10 years collaboration IPHC/CNRS – IRMM/JRC – IFIN-HH,

See contributions: M.Nyman, IRMM
A.Olacel, IFIN-HH
A.Negret, IFIN-HH
G.henning, IPHC
Inelastic scattering and (n,xn) experimental studies

4 HPGe Planar (110°,150°) Actinides samples
ΔEn = 10 keV @ En = 1 MeV

GELINA@IRMM(Geel)

GELINA

GRAPhEME @ FP16/30 m

12 HPGe Ø 80 mm x L 80 mm (110°,150°)
ΔEn = 1 keV @ En = 1 MeV

Dresden, December 3th, 2014

Maëlle Kerveno
From \((n,xn \, \gamma)\) XS to total XS: step by step

Level production and total \((n,xn)\) cross sections

Prompt g-ray spectroscopy method

Theoretical model

Spectroscopic parameters

Measured \((n,xn \, \gamma)\) cross sections

Gamma efficiency
- detect. eff. determination
- sample characterization

Number of counts
- stability
- identification
- fitting procedure
- low energy gamma
(n,xn γ) challenges: 238U example

238U level scheme

<table>
<thead>
<tr>
<th>E. (keV)</th>
<th>Reaction</th>
<th>E₁ (E₂)</th>
<th>E₂ (E₃)</th>
</tr>
</thead>
<tbody>
<tr>
<td>44.915</td>
<td>(n,n')</td>
<td>44.915</td>
<td>0 (0+)</td>
</tr>
<tr>
<td>103.5</td>
<td>(n,n')</td>
<td>148.38</td>
<td>44.915 (2+)</td>
</tr>
<tr>
<td>104.2</td>
<td>(n,3n)239U</td>
<td>149.5</td>
<td>45.2 (2+)</td>
</tr>
<tr>
<td>106.3a</td>
<td>(n,2n)237U</td>
<td>162.3 (9/2+)</td>
<td>56.3 (5/2+)</td>
</tr>
<tr>
<td>148.967</td>
<td>(n,2n)239U</td>
<td>159.962 (6/2+)</td>
<td>11.393 (3/2+)</td>
</tr>
<tr>
<td>153</td>
<td>(n,2n)241U</td>
<td>317.3 (13/2+)</td>
<td>162.3 (9/2+)</td>
</tr>
<tr>
<td>158.8</td>
<td>(n,n')</td>
<td>307.18</td>
<td>145.38 (4+)</td>
</tr>
<tr>
<td>163.3</td>
<td>(n,3n)239U</td>
<td>149.5 (5+)</td>
<td>307.18 (6+)</td>
</tr>
<tr>
<td>211</td>
<td>(n,n')</td>
<td>518.1 (8+)</td>
<td>309.8 (6+)</td>
</tr>
<tr>
<td>212.46</td>
<td>(n,3n)239U</td>
<td>522.3 (8+)</td>
<td>309.8 (6+)</td>
</tr>
<tr>
<td>218.1</td>
<td>(n,n')</td>
<td>950.1 (2+)</td>
<td>731.93 (3+)</td>
</tr>
<tr>
<td>251.2</td>
<td>(n,n')</td>
<td>930.6 (1-)</td>
<td>680.11 (1-)</td>
</tr>
<tr>
<td>257.3</td>
<td>(n,n')</td>
<td>775.9 (10+)</td>
<td>518.1 (8+)</td>
</tr>
<tr>
<td>270.1</td>
<td>(n,n')</td>
<td>950.1 (2+)</td>
<td>680.11 (1-)</td>
</tr>
<tr>
<td>439.9</td>
<td>(n,n')</td>
<td>1108.88 (3-)</td>
<td>731.93 (3+)</td>
</tr>
<tr>
<td>448.4</td>
<td>(n,n')</td>
<td>1128.8 (2-)</td>
<td>680.11 (1-)</td>
</tr>
<tr>
<td>519.46</td>
<td>(n,n')</td>
<td>826.64 (5-)</td>
<td>307.18 (6+)</td>
</tr>
<tr>
<td>583.55</td>
<td>(n,n')</td>
<td>731.93 (3-)</td>
<td>145.38 (4+)</td>
</tr>
<tr>
<td>635.19</td>
<td>(n,n')</td>
<td>680.11 (1-)</td>
<td>44.915 (2+)</td>
</tr>
<tr>
<td>642.3</td>
<td>(n,3n)239U</td>
<td>687.6 (1-)</td>
<td>45.2 (2+)</td>
</tr>
<tr>
<td>678.3</td>
<td>(n,n')</td>
<td>826.64 (5-)</td>
<td>145.38 (4+)</td>
</tr>
<tr>
<td>679.96</td>
<td>(n,n')</td>
<td>680.11 (1-)</td>
<td>44.915 (2+)</td>
</tr>
<tr>
<td>686.90</td>
<td>(n,n')</td>
<td>731.93 (3-)</td>
<td>44.915 (2+)</td>
</tr>
<tr>
<td>749.2</td>
<td>(n,n')</td>
<td>1056.38 (4+)</td>
<td>307.18 (6+)</td>
</tr>
<tr>
<td>818.06</td>
<td>(n,n')</td>
<td>966.13 (2+)</td>
<td>145.38 (4+)</td>
</tr>
<tr>
<td>849.4</td>
<td>(n,n')</td>
<td>997.58 (3-)</td>
<td>145.38 (4+)</td>
</tr>
<tr>
<td>882.3</td>
<td>(n,n')</td>
<td>927.21 (0+)</td>
<td>44.915 (2+)</td>
</tr>
<tr>
<td>885.46</td>
<td>(n,n')</td>
<td>930.6 (1-)</td>
<td>44.915 (2+)</td>
</tr>
<tr>
<td>905.9</td>
<td>(n,n')</td>
<td>1037.25 (2+)</td>
<td>44.915 (2+)</td>
</tr>
<tr>
<td>921.19</td>
<td>(n,n')</td>
<td>966.13 (2+)</td>
<td>44.915 (2+)</td>
</tr>
<tr>
<td>952.05</td>
<td>(n,n')</td>
<td>997.58 (3-)</td>
<td>44.915 (2+)</td>
</tr>
<tr>
<td>957.3</td>
<td>(n,n')</td>
<td>1105.71 (3+)</td>
<td>145.38 (4+)</td>
</tr>
<tr>
<td>966.9</td>
<td>(n,n')</td>
<td>966.13 (2+)</td>
<td>0 (0+)</td>
</tr>
<tr>
<td>992.32</td>
<td>(n,n')</td>
<td>1037.25 (2+)</td>
<td>44.915 (2+)</td>
</tr>
<tr>
<td>1015</td>
<td>(n,n')238U</td>
<td>1060.27 (2+)</td>
<td>44.915 (2+)</td>
</tr>
<tr>
<td>1059.66</td>
<td>(n,n')238U</td>
<td>1059.66 (3+)</td>
<td>44.915 (2+)</td>
</tr>
<tr>
<td>1163</td>
<td>(n,n')238U</td>
<td>1163 (7+)</td>
<td>1163 (7+)</td>
</tr>
</tbody>
</table>

... and 1014.5 in 27Al

<table>
<thead>
<tr>
<th>E. (keV)</th>
<th>Reaction</th>
<th>E₁ (E₂)</th>
<th>E₂ (E₃)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1020</td>
<td>(n,n')238U</td>
<td>1167.99 (4+)</td>
<td>148.39 (4+)</td>
</tr>
<tr>
<td>1037.3</td>
<td>(n,n')238U</td>
<td>1037.25 (2+)</td>
<td>0 (0+)</td>
</tr>
<tr>
<td>1060.3</td>
<td>(n,n')238U</td>
<td>1105.71 (3+)</td>
<td>44.915 (2+)</td>
</tr>
<tr>
<td>1084.08</td>
<td>(n,n')238U</td>
<td>1128.84 (2-)</td>
<td>44.915 (2+)</td>
</tr>
<tr>
<td>1123</td>
<td>(n,n')238U</td>
<td>1168.88 (3-)</td>
<td>44.915 (2+)</td>
</tr>
<tr>
<td>1179.3</td>
<td>(n,n')238U</td>
<td>1233.12 (2+)</td>
<td>44.915 (2+)</td>
</tr>
<tr>
<td>1278.8</td>
<td>(n,n')238U</td>
<td>1278.54 (2-)</td>
<td>0 (0+)</td>
</tr>
</tbody>
</table>

a Observed, but not referenced in NNDC website.

Target natU: 10.6 g, 0.18 mm

Beam time: 1200 h

36 (n,n' γ) XS
- Large set of data
- 5 in the main band
- 6 to the ground state

3 (n,2n γ) XS

4 (n,3n γ) XS

Analysis work: A. Bacquias (IPHC)
(n,xn γ) challenges: 238U example

γ efficiency:
- MCNP, GEANT4 simulations, punctual and extended source meas.
- Precise sample characterization (number of atoms, oxidation)

Sample before polishing

Sample after polishing

JRC/IRMM
Precise γ-ray spectroscopy meas. (234U γ-transition)
Atom number 238U (~1 %)

IRMM target laboratory
precise sample mass and thickness $\text{nat}^\text{U} \sim 10^{-3}$
determination before and after polishing

JRC/ITU
Surface oxidation type: mixed U$_3$O$_8$ + C
Image with secondary electron microscopy technique
(n,xn \(\gamma \)) challenges: \(^{238}\text{U}\) example

Low \(\gamma \) energy:
- Very low statistic (IC)
- High and complex background
- Electronic effect

Careful Fitting procedure
(less than 300 counts per energy windows and for one detector)
Correction procedure
(n,xn γ) challenges : ^{238}U example

Low γ energy:
- Very low statistic (IC)
- High and complex background
- Electronic effect

(n,n’) window for one detector
45 keV : ~ 2000 counts
103 keV : ~ 180000 counts

L2 (4+) -> L1 (2+)
$E_{\gamma} = 103$ keV

L1 (2+) -> L0 (0+)
$E_{\gamma} = 45$ keV

PRELIMINARY
From \((n,xn \gamma)\) XS to total XS: step by step

Prompt g-ray spectroscopy method

Theoretical model

Spectroscopic parameters

Level production and total \((n,xn)\) cross sections

Measured \((n,xn \gamma)\) cross sections

Reconstruction method

- \(\rightarrow\) level scheme
- \(\rightarrow\) branching ratio
(n,xn)_L challenges: \(^{238}\text{U}\) example

Determination of (n,xn) level production XS
- Two possible methods without or with BR knowledge

Need the measurement of all the feeding and decaying transitions

Need the measurement of only one decaying transition of all involved levels

Impossibility to deduced level XS without BR knowledge
But checks are possible for some \(\gamma\) transitions
Known transitions:
- Trans. to GS
- Trans. With BR=0
- Even split trans.

- **Impact of low lying states**
 (even split redistribute flux to first and second level of GSB)
- **Sensitivity test, MC simul.** with several BR scheme possibilities
 (TALYS db, Weisskopf trans. Proba., all even splits)

⇒ **Effect of 10%** for the decay paths connected to first levels in the GSB
⇒ Need to **improve bibliography** study, **more simulations** of the effects, exp. determination on BR

(n,xn)_L challenges: \(^{238}\text{U}\) example
From \((n,xn \, \gamma)\) XS to total XS : step by step

Reconstruction method
- level scheme
- branching ratio
- need theoretical predictions
Dresden, December 3rd, 2014

Maëlle Kerveno

Total (n,xn) challenges : 238U example

Determination of (n,xn) XS

Total inelastic scattering cross section is the sum of the cross section carried by all transitions that directly decay to the ground-state.

Several but not enough...!

![Graph showing cross section vs energy](image1)

Contribution of (n,n’ γ+EC) to the total XS

![Graph showing contribution of (n,n’ γ+EC) to the total XS](image2)

Need of theoretical predictions to provide missing XS

\Rightarrow With the preliminary test of predictive power on all measured γ-transitions.
$^{238}\text{U}(n,n'\gamma)$ XS versus model predictions

No general trend

- Disagreement between Exp. data

- TALYS, EMPIRE calculations:
 - No general agreement
 - Different inputs (structure models for low lying excitations, OMP, discrete levels embedded in the continuum ...)

GS Band
- 45 keV $2^+ \rightarrow 0^+$
- 103 keV $4^+ \rightarrow 2^+$
- 159 keV $6^+ \rightarrow 4^+$
- 211 keV $8^+ \rightarrow 6^+$

Band 2
- 635 keV $1^- \rightarrow 2^+_{bgs}$
- 584 keV $3^- \rightarrow 4^+_{bgs}$
- 519 keV $5^- \rightarrow 6^+_{bgs}$

Band 6
- 687 keV $3^- \rightarrow 2^+_{bgs}$
- 678 keV $5^- \rightarrow 4^+_{bgs}$
- 885 keV $7^+ \rightarrow 8^+_{bgs}$
- 1060 keV $3^+ \rightarrow 2^+_{bgs}$
- 1084 keV $5^+ \rightarrow 4^+_{bgs}$
(n,xn γ) XS versus model predictions

Improvements are foreseen
For pre equilibrium emission

Total (n,xn) XS determination with the help of theoretical predictions
⇒ Improvements are necessary, lower limit XS otherwise

... See Marc Dupuis (CEA) contribution
The 233U(n,xn γ) cross section measurements
(an already long story...)

233U sample (7 years to obtain)
Made by IRMM target lab.
M = 8.3 g, \varnothing = 3 cm,
thickness = 0.64 mm,
Activity \sim 3 GBq

Segmented Ge detector
(54x54 mm, t=20 mm),
36 pixels (6.66 by 6.66)

⇒ Upgrade of the GRAPhEME set-up
(fall 2014)
(n,xn γ) XS : next challenge

The 233U(n,2n γ) cross section measurements
(an already long story...) upgrade of the set-up
(n,xn γ) XS : next challenge

The 233U(n,xn γ) cross section measurements
(an already long story...) First spectra!

Pile up rate
in monocristal : 32%
In pixel : ~ 2 %
Data rate
100MB/15 min

Measurement campaign:
Fall-winter 2014 : tuning and first in beam test
GELINA Shutdown South FP: 1/03 – 31/10/2015
Winter 2015 : data acquisition
GRAPhEME provides **comprehensive data sets**:

- 232Th, 233,235,238U(n,x$_{1,2,3}$n γ), level production and (n,n’) cross sections for 0<En<20 MeV
- Uncertainty target of few % -> difficult to reach (range 3%-20%).

- Long measurement for **low energy gamma transitions** in actinides or electron conversion measurements (CHANDA)?
- 238U **structure data** measurements (coupling GAINS-GRAPhEME).
- 233U measurements... but also data on nat,182,183,184,186W and Zr

... See Greg Henning (IPHC) contribution

- Exclusive (n,xn γ) cross sections are a **real challenge** for the theoretical codes as many processes are involved and thus could be tested,
- Improvements are possible with **QRPA modelisation** of the pre equilibrium, more investigations on mechanisms are needed.

Necessity to keep strong links between experimentalists, theoreticians and evaluators.

Thank you for your attention...