Introduction to CMOS Pixel Sensors

Marc Winter – IPHC-CNRS/IN2P3 (Strasbourg)
V Scuola Nazionale – Legnaro, 17 April 2013

OUTLINE

• Main features of CMOS pixel sensors
 ▶ motivation ▶ principle: sensing & read-out ▶ limitations ▶ hit characteristics

• Achieved performances
 ▶ means of evaluation ▶ beam test characterisation ▶ sources of performance degradation

• Applications
 ▶ system integration aspects ▶ subatomic physics apparatus

• Outlook
 ▶ 2D sensors ▶ 3D sensors

• Summary
The Quadrature of the Vertex Detector

- CMOS pixel sensors offer the perspective of "combining the extremes" (ultimately !)

- Several labs develop CMOS pixel sensors:
 - Italy (Univ., INFN), UK (RAL), CERN,
 - Germany (Heidelberg, Bonn, ...), USA,
 - France (IPHC, Saclay), ...

- CMOS Pixel Sensors chosen/envisaged by growing number of subatomic physics experiments:
 - STAR at RHIC/BNL: commissioning
 - ALICE at LHC/CERN: under development
 - CBM at FAIR/GSI: under development
 - ILC: option
 - Etc.

- Variety of applications besides subatomic physics:
 - dosimetry, hadrontherapy, γ & β counting, ...
CMOS Technology

- C.M.O.S. ≡ Complementary Metal-Oxide-Semiconductor

- CMOS pixel sensors exploit the fabrication processes used in industry for mass production of integrated circuits:
 - micro-processors, micro-controller, RAM, ...
 - cell phones & cameras, lap tops, cars, ...

- CMOS fabrication mode:
 - μ-circuit lithography on a substrate
 - proceeds through reticules ($\sim 2\times2 \rightarrow 2\times3 \text{ cm}^2$) organised in wafers (typically 8")
Main Features of CMOS Sensors

- P-type low-resistivity \((O(10)\Omega \cdot cm)\) Si hosting n-type "charge collectors"
 - signal created in epitaxial layer (low doping):
 \(Q \sim 70–80\ e\cdot h/\mu m \implies \text{signal } \lesssim 1000\ e^-
 - charge sensing through n-well/p-epi junction
 - excess carriers propagate (thermally) to diode
 with help of reflection on boundaries
 with p-well and substrate (high doping)
 \(\implies\) continuous signal sensing (no dead time)

- Prominent advantages of CMOS sensors:
 - \textbf{grainularity}: pixels of \(\lesssim 10 \times 10\ \mu m^2\) \(\implies\) high spatial resolution (e.g. \(\lesssim 1\ \mu m\) if needed)
 - \textbf{low material budget}: sensitive volume \(\sim 10 - 20\ \mu m\) \(\implies\) total thickness \(\lesssim 50\ \mu m\)
 - \textbf{signal processing} \(\mu\text{circuits integrated in the sensors}\) \(\implies\) compacity, high data throughput, flexibility, etc.
 - \textbf{industrial mass production} \(\implies\) cost, industrial reliability, fabrication duration, multi-project run frequency, technology evolution, ...
 - \textbf{operating conditions}: from \(\ll 0^\circ C\) to \(\gtrsim 30-40^\circ C\)

\(\implies\) Thinning down to \(\sim 30\ \mu m\) permitted
Basic Read-Out Architecture

Based on 3 transistor cell

$V_{Q, integr}$

V_{reset}

$\Delta v_{typ} \propto I_{leak}$

$\Delta v_{sig} \propto Q_{signal}$

Integration time

 ADC

Array of pixels

High-speed

Analog read-out

& storage

Low power – only significant draw at readout edge

Pixel Array: Column select – ganged row read

Pixel

Collection Electrode

Restores potential to collection electrode

Rest on 3 transistor cell

Source follower buffering of collected charge

Row Bus Output

M1

M2

M3

Column Select

Gnd

Vdd

Vdd

Reset

Resets circuit

t_{fr1}

t_{fr2}

t_{reset}
CMOS Pixel Sensors: Read-Out Architectures

• Signal sensing and read-out are decoupled:
 ※ signal sensing (charge collection) is continuous (no dead time)
 ⇒ signal read-out may be performed in various ways, independently of charge collection

• Signal processing alternatives:
 ※ self-triggered: only fired pixels are (randomly) read-out ≡ hybrid pixels
 ※ rolling shutter (less power consumption): read-out of all pixels (A or D), followed by sparsification outside of sensitive area
 ※ snap-shot: requires 2 consecutive read-outs, with 1 used for average noise subtraction (rather suited to light imaging due to up to 50 % dead time)

• Signal transfer alternatives:
 ※ continuous: permanent output to outside world
 ※ intermittent: signal stored on chip until read-out sign is provided ← event based trigger or beam time structure (ILC)
Overview of Rolling Shutter Architecture

- **Sensor organisation:**
 - Signal sensing and analog processing in pixel array
 - Mixed and Digital circuitry integrated in chip periphery
 - Read-out in rolling shutter mode
 (pixels grouped in columns read-out in //)
 - trend: increase functionalities inside pixels

- **Main consequences:**
 - **Read-out speed:**
 - integration time
 - nb of pixels × pixel read-out time (O(100 ns))
 - **Power consumption:**
 - limited inside the pixel array to the row(s) being read out
 - **Material budget:**
 - peripheral band(s) for mixed+digital circuitry, insensitive to impinging particles
 - ~ 10 % of chip surface
 - **Time stamp:**
 - each row encompasses a specific time intervalle
 - adapt (exploit with) track reconstruction code
Signal Sensing & Processing Architectures

- **Main sensing and read-out micro-circuit elements:**
 - in-pixel conversion of charge into electrical signal (e.g. voltage) with average noise subtraction
 - signal discrimination (in perspective of zero-suppression)
 - discriminator output encoding (sparsification with charge encoding)
 - data transmission logic → connection with the outside world

- **In-pixel μcircuitry:**

```
<table>
<thead>
<tr>
<th>basic read-out</th>
<th>pre-amp + &lt;noise&gt; subtraction</th>
<th>pre-amp + shaper + discriminator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td>outside chip</td>
<td>chip periphery</td>
</tr>
<tr>
<td>Reduction</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```
Limitations of the Technology

- Very thin sensitive volume
 ⇒ impact on signal magnitude (mV !) ⇒ very low noise FEE required

- Sensitive volume only partly depleted
 ⇒ negative impact on radiation tolerance & speed but positive on σ_{sp} (charge spread)
 ▶ tendency : high-resistivity epitaxial layer ⇒ improved radiation tolerance (SNR)

- Commercial fabrication
 ⇒ fabrication parametres (doping profile \rightarrow epitaxial layer, number of metal layers, etc.)
 not optimal for charged particle detection (optimised for commercial items):
 * real potential of CMOS pixel sensors not exploited (yet !)
 * choice of process for HEP often driven by epitaxial layer characteristics (governs signal),
 at the expense of the FEE circuitry parametres (feature size, nb of Metal Layers)

- Use of P-MOS transistors inside pixel array restricted in most processes
 ⇒ limited signal processing functionnalities inside (small) pixels (most performed on sensor periphery)
 ▶ tendency : buried P-well techno. ⇒ allows use of P-MOS transistors (watch charge coll. eff. !)
Hit Characteristics

- Standard processes: charges diffuse thermally
 - \(\lesssim 10^3 \) e\(^-\) shared among \(\sim 10\text{-}15 \) pixels per cluster
 - typically \(\lesssim 200/300 \) e\(^-\) (MPV) in seed pixel

- High-resistivity epitaxy (O(k\(\Omega\cdot cm\))): larger charge sensing volume
 - less diffusion \(\Rightarrow \) less pixels/cluster (typically \(\lesssim 4 \))
 - larger charge collected/pixel (e.g. \(\sim 500 \) e\(^-\)) \(\Rightarrow \) higher SNR

Total cluster charge (5x5 pixels)

Pixel multiplicity vs Threshold

For comparison: standard CMOS technology, low resistivity P-epi

Depletion zone

high resistivity (1kOhm\(\cdot\)cm) P-epi: size of depletion zone size is comparable to the P-epi thickness!
Calibration of Charge-to-Voltage Conversion Factor

- **Goal**: establish a well defined correspondence between the measured sensor output voltages and the amplitude of the charge collected by each diode.

- **Mean**: use radioactive sources emitting particles with adapted and well defined energy.

- **Ex**: 55Fe source
 - emits X-Rays with 5.9 keV ($\sim 90\%$) or 6.49 keV ($\sim 10\%$).
 - X-Rays interact with Si atoms through photo-electric effect:
 - the ejected p.e. carries $\sim 100\%$ of the X-Ray energy (e^{-} binding energy ...).
 - the p.e. creates eh pairs at the expense of ~ 3.6 eV per pair:
 - $5900/3.6 \approx 1640$ eh pairs ($6490/3.6 \approx 1800$ eh)

- **Calibration with 55Fe X-Rays**
 - a small fraction of X-Rays impinge sensor near sensing diode:
 - nearly all e^{-} created get collected by nearby sensing diode.
 - the charge distribution observed on the ADC scale exhibits 2 peaks.
Main Sources:

- in pixel: sensing diode capacitance
- in pixel: leakage current collected by sensing diode
- outside pixel: signal processing micro-circuits

Tricks to minimise the noise:

- maximal amplification inside pixel
 ⇒ minimises impact of the noise of signal processing micro-circuits
- operate chip with short integration time
 ⇒ minimises integrated leakage current
- operate chip at low temperature
 ⇒ minimises thermal noise
M.I.P. Detection Performance Evaluation

- **Laboratory:**
 - test steering & read-out functionalities (e.g. pattern generator)
 - evaluate charge collection efficiency & noise (\(^{55}\)Fe, light)
 - assess charge-to-voltage conversion factor (\(^{55}\)Fe)
 - estimate "m.i.p." detection efficiency with \(\beta\) (\(^{106}\)Ru)

- **Particle beams:**
 - typically \(\sim 100\) GeV/c \(\pi^-\) at CERN-SPS (not really m.i.p.)
 - \(\Rightarrow\) minimise multiple scattering
 - install chip to test inside beam telescope (EUDET BT)
 - determine:
 - detection efficiency (and SNR)
 - fake hit rate (and noise)
 - single point resolution
 - etc.
CMOS Pixel Sensors: State of the Art

CMOS 0.35 μm OPTO technology
Chip size: 13.7 x 21.5 mm²

- Testability: several test points implemented all along readout path
 - Pixels out (analogue)
 - Discriminators
 - Zero suppression
 - Data transmission

- Pixel array: 576 x 1152, pitch: 18.4 μm
- Active area: ~10.6 x 21.2 mm²
- In each pixel:
 - Amplification
 - CDS (Correlated Double Sampling)

- Row sequencer
- Width: ~350 μm

- 1152 column-level discriminators
 - Offset compensated high gain preamplifier followed by latch

- Zero suppression logic

- Reference Voltages Buffering for 1152 discriminators

- I/O Pads
 - Power supply Pads
 - Circuit control Pads
 - LVDS Tx & Rx

- Current Ref.
- Bias DACs
- Readout controller
- JTAG controller
- Memory management
- Memory IP blocks
- PLL: 8b/10b optional

TWEPP-2010
M.I.P. Detection Efficiency & Fake Hit Rate

- **Motivation**: find a sensor working point with high detection efficiency and marginal contamination from noise fluctuations (fake hits)

- **Detection efficiency**
 - fraction of tracks reconstructed in telescope which are also reconstructed in the sensor
 - study as function of discriminator threshold
 - a high threshold may harm detection efficiency \(\Rightarrow \) Trade-off!

- **Fake hit rate**
 - fraction of noise fluctuations which pass the discriminator threshold
 - study as a function of discriminator threshold
 - a high threshold is best to keep fake rate marginal, but ... (typically \(\lesssim 10^{-3/-4} \))
• Compare position of impact on sensor surface predicted with BT to position of hit reconstructed with sensor under test:
 clusters reconstructed with eta-function,
 exploiting charge sharing between pixels

• Impact of pixel pitch (analog output):
 \(\sigma_{sp} \sim 1 \, \mu m \) (10 \(\mu m \) pitch) \(\rightarrow \lesssim 3 \, \mu m \) (40 \(\mu m \) pitch)

• Impact of charge encoding resolution:
 \(\triangleright \) ex. of 20 \(\mu m \) pitch \(\Rightarrow \sigma_{sp}^{\text{dig}} = \text{pitch}/\sqrt{12} \sim 5.7 \, \mu m \)

<table>
<thead>
<tr>
<th>Nb of bits</th>
<th>12</th>
<th>3-4</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td>measured</td>
<td>reprocessed</td>
<td>measured</td>
</tr>
<tr>
<td>(\sigma_{sp})</td>
<td>(\lesssim 1.5 \mu m)</td>
<td>(\lesssim 2 \mu m)</td>
<td>(\lesssim 3.5 \mu m)</td>
</tr>
</tbody>
</table>
Radiation Tolerance

- **Introductory remarks:**
 - still evolving (csq of CMOS industry process param. evolution)
 - CMOS technology expected to tolerate high ionising radiation doses (≫ 10 MRad), in particular with $T < 0^\circ$C & short t_{integ}
 - main a priori concern: NON-ionising radiation (in absence of thick depleted sensitive volume)

- **Influence of pixel pitch:**
 - fig: all measts done with low resistivity epitaxial layer, but 1 high density sensing diodes (≡ small pitch)
 improves non-ionising radiation tolerance

- **Influence of epitaxial layer resistivity:**
 - ex: 400 $\Omega \cdot cm$ & $O(1)$V depletion voltage
 - trend: $\gtrsim 1 k\Omega \cdot cm$ & $\gtrsim 10$ V

⇒ Tolerance to $\gtrsim 10^{14-15} \text{n}_{eq}/cm^2$ seems achievable
Sensor Integration in Ultra Light Devices

- "Useful" sensor thickness $\lesssim 30 \mu m \Rightarrow$ opens up new possibilities w.r.t. thicker sensors
 - coarse thickness of sensors (e.g. STAR-PXL) is 50 μm

- STAR-PXL ladder (room temperature, single-end supported):
 - total material budget $\simeq 0.37 \% X_0$:
 - 50 μm thin sensors $\simeq 0.05 \% X_0$
 - flexible cable $\simeq 0.07 \% X_0$
 - mechanical support $\simeq 0.2 \% X_0$
 - adhesive, etc. $\simeq 0.05 \% X_0$

- Double-sided ladders with $\sim 0.2-0.3 \% X_0$:
 - manifold bonus: compactness, alignment, redundancy, pointing accuracy (shallow angle), fake hit rejection, etc.

- Unsupported & flexible ladders with $\lesssim 0.15 \% X_0$
 - 30 μm thin CMOS sensors mounted on thin cable & embedded in thin polyimide \Rightarrow suited to beam pipe?
Examples of Applications in Subatomic Physics

- **Beam telescopes**:
 - EUDET (FP-6 / 2006-2010) : 6 planes with $1 \times 2 \, \text{cm}^2$ sensors
 - AIDA (FP-7 / 2011-2015) : ≥ 3 planes with $4 \times 6 \, \text{cm}^2$ sensors

- **Vertex detectors**:
 - STAR-PXL at RHIC : 2 layers
 - CBM-MVD at FAIR/GSI : 2-3 stations
 - ALICE-ITS at LHC : 3 inner layers
 - FIRST at GSI (p/C PMMA x-sec) : 4 stations
 - option for ILD-VTX at ILC : 3 double-layers

- **Trackers ("large pitch")**:
 - BES-III at BEPC
 - ALICE-ITS at LHC : 4 outer layers ($\lesssim 10 \, \text{m}^2$)
 - in general : trackers surrounding vertex detectors

- **EM calorimetres** : SiW calorimetre
 - generic R&D on TRACAL
Perspectives: Fast 2D sensors

- Evolve towards feature size $<< 0.35 \mu m$:
 - μcircuits: smaller transistors, more Metal Layers, ...
 - sensing: quadruple well, depleted sensitive volume, ...

- Benefits:
 - faster read-out \Rightarrow improved time resolution
 - higher μcircuit density \Rightarrow higher data reduction capability
 - thinner gates, depletion \Rightarrow improved radiation tolerance

- On-going R&D (examples):
 - **APSEL** sensor (130 nm) for future Vx Det.:
 - in-pixel pre-amp + shaping + discrim.
 - sensing through buried n-well
 - shallow n-well hosting P-MOS T
 - **TJSC** project (180 nm) for ALICE-ITS upgrade:
 - high-resistivity, 18-40 μm thick, epitaxy
 - deep P-wells hosting P-MOS T

- Main limitations:
 - VDSM technologies not optimised for analog μcircuits (low V !) \Rightarrow reliability
 - conflict between speed (e.g. 10 ns) and granularity (e.g. $20 \times 20 \mu m^2$ pixels)

\Rightarrow **Natural trend**: chip stacking
Using 3DIT to reach Ultimate CMOS Sensor Performances

- 3D Integration Technologies allow integrating high density signal processing \(\mu \)circuits inside small pixels by stacking (\(\sim 10 \ \mu m \)) thin tiers interconnected at pixel level.

- 3DIT are expected to be particularly beneficial for (small pixel) CMOS sensors:
 - combine different fab. processes \(\Rightarrow \) chose best one for each tier/functionnality
 - alleviate constraints on peripheral circuitry and on transistor type inside pixel, etc.

- Split signal collection and processing functionalities:
 - Tier-1: charge sensing
 - Tier-2: analog-mixed \(\mu \)circuits
 - Tier-3: digital \(\mu \)circuits

- The path to nominal exploitation of CMOS pixel potential:
 - fully depleted 10-20 \(\mu m \) thick epitaxy \(\Rightarrow \) \(\lesssim 5 \) ns collect. time, rad. hardness \(> \) Hybrid Pix. Sensors ???
 - FEE with \(\leq 10 \) ns time resolution \(\Rightarrow \) solution for CLIC & HL-LHC specifications ???

- 3DIC \(\equiv \) consortium coordinated by FermiLab has already produced 1st generation of chips
• CMOS sensor technology has become mature for high performance vertexing and tracking
 * most relevant for specifications governed by granularity, material budget, power consumption, cost, ...
 * excellent performance record with beam telescopes (e.g. EUDET project)
 * 1st vertex detector experience will be gained with STAR-PXL, starting data taking in a few weeks ...
 * new generation of sensors under development for experiments > 2015 (including trackers & calo.)
 ALICE-ITS upgrade (see also talk of W. Snoeys), CBM-MVD (FAIR), ..., ILC VD (?), ...

• Technology full potential still far from being exploited
 (despite improvement due to high-resistivity epitaxial layer processes)

• Evolution of industry opens the door to 2 ”natural” steps
 towards the ”ultimate” performances of the technology :
 * fast 2D sensors based on VDSM CMOS technologies may allow for \(\lesssim O(1) \ \mu s \), \(\gg 10 \text{ MRad} \)
 * 3D chips are expected to ”exhaust” the technology potential, but there is still a rather long way to go
 \(\Rightarrow \) may lead to fast & rad. hard devices suited to HL-LHC & CLIC