MIMOSA-22SX - A Monolithic Active Pixel Sensor for Low Energy X-Ray Counting Applications

M. Kachel1,2, J. Baudot1,2, G. Bertolone1,2, A. Dawiec3, F. Guezzi-Messaoud1,2,3, J. Heymes1,2, A. Himmi1,2, C. Hu-Guo1,2, L. A. Perez-Perez1,2, M. Winter1,2

1. Université de Strasbourg, IPHC, 23 rue du Loess 67037 Strasbourg, France
2. CNRS, UMR7178, 67037 Strasbourg, France
3. SOLEIL Synchrotron, L’Orme des Merisiers, 91190 Saint-Aubin, France

Motivation
Mimosa 22 SX design details
Charge collection studies
Mimosa 22SX results
Conclusions and future steps
Motivation:
Low energy X-Rays counting with MAPS

CCD
- Detector
- Readout & Processing Cell
 - Few interconnections
 - Slow data transmission
 - Small pixel pitch
 - Wide energy range
 - No single photon image
 - Limited counting rate

Monolithic Sensor MAPS
- Sensitive Volume
 - NO interconnections
 - Single photon counting
 - Low energy detection
 - Low cost
 - Small pixel pitch
 - Moderate counting rate (per pixel)

Hybrid Pixel Sensor
- Pixel detector
 - Bump bonding
 - High counting rate
 - Single photon counting
 - Limited low E detection
 - High cost
 - Bonding
 - Detector

N49-3 2016, maciej.kachel@iphc.cnrs.fr
Mimosa 22SX design (I)

Specifications
- Designed by PICSEL + µElec – IPHC, Detector - Soleil
- Tower Jazz 180 nm CIS
- 128 x 256 pixels with **22 µm pixel** pitch (16 mm² active)
- Two versions of pixels with **AC coupled collecting diode**
- Discriminator with 2 thresholds -> **energy window**
- 8 columns with analog outputs (characterization)
- Submitted in 30\(^{th}\) November 2015 on two substrates:
 - 18 µm epitaxial layer, resist. > 1 k Ohm.cm
 - Czochralski, resist. > 0.6 kOhm.cm
- Lab tests started in June 2016

Targeted Performance
- X-Ray Energy Range [few hundreds eV – 5 keV]
- ENC < 20 e\(^{-}\) rms
- Counting Dynamic: from 1 to **10\(^4\)** (not discussed) ph/pix/s
Collecting diode:
- Front-side bias
- AC coupled
- Circular shape

Amplifier:
- Self biased
- Switched power

Output stage:
- Correlated Double Sampling
- Rolling shutter

N49-3 2016, maciej.kachel@iphc.cnrs.fr
Mimosa 22SX design (II)

Energy window

- Discriminator at the end of each column
- Two thresholds provide an energy window
 - Value of the thresholds controlled by the internal DACs (1 step = 0.25 mV ~ 10 e⁻ rms)
Photon detection efficiency: Depletion studies

Studies performed with a Pipper2 circuit
- Tower Jazz 180 nm CIS
- ‘3T’ pixel + analog readout study charge collection
- Identical collecting diode as Mimosa 22SX
- 360 eV - Mn Kα FWHM (10°C) for EPI18

- EPI 18 - TCAD simulation: Depleting max ~ 15µm
- CZ - compare number of entries from Mn Kα with EPI 18

Note: with 30 µm of depletion, 80% of 5keV photons are absorbed
MIMOSA 22SX: Detection efficiency with Energy window

- NIR laser emulates a space-correlated continuous energy spectrum
 - Short laser pulses (100ns) sent at the beginning of every recorded frame
 - Unfocused laser spot \rightarrow center ~ 6000 eV, outer ring ~ 500 eV

Reconstructed (energy window scan) laser spot profile

Stable number of pulses detected throughout range of thresholds \Rightarrow *suggest constant detection efficiency from 800 to 6000 eV*
MIMOSA 22SX: Energy window (II)

- 55Fe spectrum reconstruction
 - Energy window scan -> window width ~ 250 eV

![Graphs showing raw analog data and digital reconstructed data with FWHM values.](image-url)
Conclusions

- **PIPPER 2** - Charge collection studies with analog output
 - Front-side bias (30 V) depletes at least 30 µm with 22 µm pitch.
 - Maximum depletion thickness still under investigation

- **MIMOSA 22SX** — a prototype of MAPS counting X-rays
 - Pixel size 22x22 µm²
 - Energy windowing operational
 - Sensitivity (of q-collection & readout) to energy equivalent of 800 eV confirmed.

N49-3 2016, maciej.kachel@iphc.cnrs.fr
Next Steps

Chip processing for back side illumination
- Thinning to depleted depth
- Entrance window for low X-ray energies

Design
- Optimization of amplifier
 - Lower noise
 - Higher speed
- Full scale circuit with 1cm2 active area
Mimosa 22 SX: Fake Rate

- Measurements performed without the source
- Scanning with energy window (~60 eV) from 800eV to 2keV

Above 1 keV, for 1M pixels 1 ‘dark count‘ per frame

Fake Hit Rate @ room Temperature

N49-3 2016, maciej.kachel@iphc.cnrs.fr
Mimosa 22 SX:
Analogue response

• Measurement with 55Fe at 40V

- Peak at the same position in seed and cluster plots -> single pixel events
- Noise base line ~ 11 DAC $\Rightarrow 24$ e$^-$, Peak sigma ~ 135 e$^-$ (500 eV)

Amplifier has higher noise than expected, but for first tests with monochromatic X-rays of few keV should be sufficient