Measurement of actinides (n,xn γ) cross sections: Towards the evaluation

Introduction: general context

Gen IV reactor systems

New concepts of reactors
- fast reactors
- accelerator driven systems

New fuel cycle
- $^{238}\text{U} / ^{239}\text{Pu}$
- $^{232}\text{Th} / ^{233}\text{U}$

In reactor, \((n,xn)\) reactions \((x \geq 1)\) contribute to
- Energy loss mechanism
- Neutron multiplication
- Production of radioactive isotopes

Bibliography in data bases shows that improvement of the knowledge of \((n,xn)\) process is necessary.

Important needs of new nuclear data over a wide range of nuclei, energy and reactions

One of the challenges is measurement's accuracy

NEA Nuclear Data
High Priority Request List
Introduction: experimental method

How to study \((n,xn)\) reactions?

- Direct measurement of secondary neutrons
- Activation technique
- \textit{prompt} \(\gamma\)-ray spectroscopy

\textbf{Method:} detection of the \(\gamma\)-rays stemming from the \textit{decay of excited states} of nucleus created by the \((n,xn)\) reaction.

\((n,xn\ \gamma)\) cross section measurements -> \textit{total} \((n,xn)\) cross section:

Need of theoretical model...

\textbf{but}

\((n,xn\ \gamma)\) cross sections:
- can be measured using \textit{“white” neutron beam} with the TOF technique,
- provide \textit{exclusive measurements very restrictive} for testing models.

\textbf{Case of \(^{235}\text{U}\) and \(^{232}\text{Th}\)}
Experimental set-up

GELINA, IRMM, Geel, Belgium

White neutrons beam
few eV → 20 MeV

Energized e-
f = 800 Hz

Uranium Target

30m

Prompt γ spectroscopy

Pulsed Neutron Beam

Fission Chamber

HPGe planar detectors

Sample

150° 110° 150°
110°
Experimental set-up

FP16 – 30 m

- HPGe planar Detector
- Fission Chamber
- Shielding: lead castle
- BEAM
- Digital acquisition system
 TNT2 Card @IPHC

-> Electromagnetic field (from the accelerator) insulation
-> \(\gamma \) Background reduction
Data Analysis

TOF and γ spectra

^{232}Th

Radioactivity

$^{232}\text{Th}(n,n' \gamma)^{232}\text{Th}$

$^{232}\text{Th}(n,2n \gamma)^{231}\text{Th}$

$^{232}\text{Th}(n,3n \gamma)^{230}\text{Th}$

γ-flash
Data Analysis

TOF and γ spectra

γ flash

$E_n = 20$ MeV

$E_n = 6$ MeV

$E_n = 1$ MeV

radioactivity

γ Energy (keV) $\Delta E = 1 - 6$ MeV

γ Energy (keV) $\Delta E = 6 - 20$ MeV

235U case
Data Analysis

Cross section calculation

$$\frac{d\sigma}{d\Omega}(\theta) = \frac{n_{\text{det}}}{N_{\text{at}} \cdot \phi_n \cdot \varepsilon \cdot t}$$

n_{det}: number of detected γ

N_{at}: number of atoms in the sample

ϕ_n: neutron flux

ε: HPGe efficiency

t: measurement time

Differential cross section can be expressed by a finite sum of Legendre polynomials:

$$\frac{d\sigma}{d\Omega}(\theta) = \frac{\sigma_{\text{tot}}}{4\pi} \sum_{i=0}^{\infty} a_i P_i(\cos \theta)$$

Measurement at the polynomial nodes Gauss quadrature:

$$\sigma_{\text{tot}} = 4\pi \left[w_1^* \frac{d\sigma}{d\Omega}\left(\theta_1^*\right) + w_2^* \frac{d\sigma}{d\Omega}\left(\theta_2^*\right) \right]$$

$w_1 = 0.3479$ for $\theta_1 = 30.56^\circ$ or 149.44° and $w_2 = 0.6571$ for $\theta_2 = 70.12^\circ$ or 109.88°
Results: ^{235}U

TALYS % Exp data
*(n,n'γ): good agreement in amplitude but the shape is not well reproduced
*(n,2nγ): quite good agreement in the shape but factor of 0.455 in amplitude

D.P. McNabb* exp data % Our exp data
factor of 0.455 in amplitude but McNabb data are normalized by an unknown factor

Results: 235U

TALYS Considerations:

Fissionable isotopes: How good is the TALYS fission cross section fit? And what about the total (n,n') and (n,2n) cross sections?
Results: 232Th

TALYS % Exp data

* Total cross sections:
 - Fission: ~ ok
 - (n,n') $(n,2n)$: small underestimation of the code predictions
 - $(n,n' \gamma)$ cross sections for states in ground state band:
 - amplitude ok
 - overestimation above $E_n = 7$ MeV
Results: 232Th

Preliminary results (data from only 2 detectors): γ-transitions from few exciting bands to the ground state band for the $(n,n' \gamma)$ process compared to TALYS and another experiment.

TALYS % Exp data
* $(n,n' \gamma)$: agreement is less good than for γ-transition within the ground state band.

J.H. Dave* exp data % Our exp data
* agreement is very good up to $E_n=2$ MeV (high limit of the J.H. Dave* exp data).

Results: 232Th

232Th(\(n,2n\gamma\))

E\(_{n}\) = 185.7 keV, L\(4 \rightarrow L0\)

\[\text{TALYS} \% \text{Exp data} \]

(\(n,2n\gamma\): shape is well reproduced but factor of 2.58 in amplitude

(\(n,3n\gamma\): shape is well reproduced but factor of 0.72 in amplitude

Note: the uncertainties are rather large because of the combined effects of the lower cross sections and the low neutron incident flux.
@GELINA / FP16 – 30 m:
* We have measured \((n,xn \gamma)\) reaction cross sections \((x \geq 1)\) on \(^{235}\text{U}\) and \(^{232}\text{Th}\)
* **Uncertainties** reached: 5 – 7% (see J.C Thiry thesis 09/2010)

\(^{235}\text{U}:\)
* **New experimental data** in disagreement with the only published one \((n,2n \gamma)\)
* Highlighted the **TALYS difficulties to predicted with confidence** \((n,xn \gamma)\) cross section (even if the total reaction cross section is well calculated)

\(^{232}\text{Th}:\)
* **New experimental data** in agreement with the published one \((n,n' \gamma)\)
* Confirmed that, in TALYS, semi-classical exciton model simply fails to properly describe the spin distribution that accompanies the pre-equilibrium process \((E_n \geq 7 \text{ MeV})\).
Towards the evaluation?

What about uncertainties?

Accuracy:
Target accuracies are specified per system and per energy group when they are not met of the current (initial) uncertainties.

<table>
<thead>
<tr>
<th>Energy Range</th>
<th>Initial</th>
<th>ABTR</th>
<th>SFR</th>
<th>EFR</th>
<th>GFR</th>
<th>LFR</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.07-19.6 MeV</td>
<td>29</td>
<td>12</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.23-6.07 MeV</td>
<td>20</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>1.35-2.23 MeV</td>
<td>21</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0.498-1.35 MeV</td>
<td>12</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>67.4-183 keV</td>
<td>11</td>
<td>7</td>
<td>9</td>
<td>7</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

GEDEPON Workshop: Nuclear Data Evaluation, Issy-les-Moulineaux, France 29-30 November, 2010
Towards the evaluation?

What about uncertainties?

Cross section of a given γ ray transition \([b]\)

\[
\frac{d\sigma}{d\Omega}(\theta) = \frac{n_{\text{det}}}{N_{\text{at}} \cdot \phi_n \cdot \varepsilon_\gamma \cdot t}
\]

Detected hits in a given ray:
- Good statistics
- Low background

Number of atoms in target

Incident neutron flux \([s^{-1} \cdot \text{cm}^{-2}]\)

Fission chamber characteristics

γ detection efficiency
- Measurements
- Simulations

Acquisition time \([s]\)
Towards the evaluation?

What about uncertainties?

<table>
<thead>
<tr>
<th>parameters</th>
<th>Uncertainties min</th>
<th>Uncertainties max</th>
<th>comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_{det} (for one detector)</td>
<td>1%</td>
<td>15%</td>
<td>Long running time (235U: 1248h; 232Th: 375h)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Neutron flux dependence</td>
</tr>
<tr>
<td>N_{nat}</td>
<td>1.2% (232Th)</td>
<td>2.7% (235U)</td>
<td>Precise mass, thickness, … measurements</td>
</tr>
<tr>
<td>Φ_n</td>
<td>2.3%</td>
<td>2.9%</td>
<td>Simulation + calibration measurements</td>
</tr>
<tr>
<td></td>
<td>1 MeV $< E_n < 2$ MeV</td>
<td>$E_n < 1$ MeV, $E_n > 2$ MeV</td>
<td></td>
</tr>
<tr>
<td>ε_γ</td>
<td>3%</td>
<td>6%</td>
<td>Simulation + calibration measurements</td>
</tr>
<tr>
<td></td>
<td>100 keV $< E_\gamma < 1$ MeV</td>
<td>$E_\gamma < 100$ keV</td>
<td></td>
</tr>
</tbody>
</table>

$\Delta \sigma / \sigma$ vary from 5% to 7% in the 0.5 – 9 MeV neutron energy range. But can reach up to 20% in the high neutron energy range (where the neutron flux is low).
Towards the evaluation?

Is it possible to do better?

Neutron flux:
With this set-up, it’s certainly optimized

-> multi layers fission chamber (²³⁵U)?

-> another independent neutron flux measurements with an another reference cross section, H(n,p)?

-> ~1.5%?

HPGe detector efficiency:
some improvements are still possible at low γ energy

-> by carrying out optimization of the simulation (dead zones, multiple diffusions)

-> ~1%?

Total uncertainty in (n,n’) domain -> ~3%
Total inelastic scattering cross section is the sum of the cross section carried by all transitions that directly decay to the ground-state. In general case:

\[
\sigma_n'(E) = \sum_{i=1}^{E_x(L_i) \leq E} \sigma_{n',\gamma}(E, L_i \rightarrow L_{ki}) \frac{p(L_i \rightarrow g.s.)}{p_{\gamma}(L_i \rightarrow L_{ki})}
\]

- Requires a good knowledge of spectroscopic parameters
- Practically, the deduced inelastic cross section is a lower limit for the total inelastic cross section -> model prediction
From \((n,xn \gamma)\) to \((n,xn)\) cross sections?

232\(^{\text{Th}}\) case

We have measured several \((n,n' \gamma)\) cross sections and especially some more intense transitions to the ground state.

The deduced 232\(^{\text{Th}}\)(n,n’) cross section (from the measured \((n,n' \gamma)\) ones) is very close to the total 232\(^{\text{Th}}\) inelastic cross section.
From \((n,\gamma)\) to \((n,xn)\) cross sections?

\(^{235}\text{U}(n,2n)\) case

TALYS 1.0 (P. Romain, CEA/DAM)

We have measured only \(~50\%\) of the total cross section ...

Strong model dependence

-> What is the uncertainty???
Conclusions

Accuracy business: we will continue our investigations and efforts to provide the \((n,xn\gamma) \) cross sections as accurate as possible !!!!

Deduced total reaction cross section: collaboration with theoreticians is essential

Dear evaluators and experimentalists colleagues: this workshop is the opportunity to discuss about our work so feel free to comment, to review…
Outlooks

@GELINA / FP16 – 30 m
* ANDES project (7ème PCRD)

$^{238}\text{U}(n,xn\gamma)$ reaction cross sections measurement
-> NEA Nuclear Data High Priority Request List (2 – 3%)

@SPIRAL2 / NFS
Day one experiment proposal:
"Comparison between activation and prompt spectroscopy as means of (n,xn) cross section measurements"
(case of $^{90}\text{Zr}(n,3n)$)

@ theoretical aspects
* Collaboration with A.J. Koning (NRG, Petten)
* Collaboration with P. Romain (CEA, Bruyères le Châtel) for TALYS calculations
* Collaboration with M. Sin (University of Bucharest) for EMPIRE calculations

Ph. Dessagne, E. Gasser, M. Kerveno, G.Rudolf, J.C. Thiry

Strasbourg, France

A. Plompen, C. Rouki, M. Staniou, J.C. Drohé

Geel, Belgium

C. Borcea, D. Deleanu, A.L. Negret

Bucharest, Romania

The authors thank the team of the GELINA facility for the preparation of the neutron beam and for their strong support day after day....