IMIC - Needle-Shaped Low-Power Monolithic Active Pixel Sensor for Molecular Neuroimaging on Awake and Freely Moving Rats

MAPSSIC PROJECT

- **Motivation**
 - Neuroimaging on awake and freely moving animals
 - Localization of β+ radiotracers close to the pixelated sensor

- **Requirements**
 - **Sensor**
 - Small size
 - Immunity to the 511keV γ-rays background
 - Low power
 - **System**
 - Compact system → rat behavior not influenced

IMIC SENSOR DESIGN

- **Size:** 610 x 12000 µm² (Needle-shape)
- **Sensitive area** 16 x 128 pixels → 480 x 6400 µm²
- **Technology:** 0.18 µm CMOS process on Hi-resistivity 18 µm epitaxial layer

- **Pixel design**
 - Dissipated power for the sensitive region : 115 µW
 - Detection efficiency → small pitch - 30 x 50 µm²
 - Based on a front-end amplifier of ALPIDE (ALice Pixel DEtector) [5]
 - Low power (55 nW/pixel)
 - Asynchronous operation
 - Memory to store the binary information of the hit until the readout
 - Synchronization

- **Readout**
 - Column parallel rolling shutter readout
 - Serialization to the output (16 columns → 1 output)
 - Complete matrix readout in 128 µs
 - Output bandwidth fixed by integration time not hit rate
 - Bandwidth ~ 2048 pixels / integration time
 - Digital power over matrix ~ 1-3 µW averaged over the integration time
 - Chip configuration : SPI protocol to steer on-chip DACs → polarization of the front-end

SENSOR VALIDATION

- **Laboratory tests**
 - Power consumption of the whole sensor : 161 µW
 - On-chip DACs fully operational

- **Measurements with 90Sr source**
 - Integration time between 10 ms and 1 s
 - Room temperature operation
 - β source activity regulated with shield thickness

Results translated to a mean activity in the matrix over 1000 frames vs the integration time

Detection performances

- For long integration time (~1 s)
 - Dark count rate → 1.15 hits/matrix/s
- For short integration time (~< 20 ms)
 - Maximum activity ~ 80 000 hits/matrix/s
 - Dark count rate ~ 2.3 hits/matrix/s
- For expected activity (~< 100 hits/matrix/s)
 - No hit loss with long integration time (~1s)

CONCLUSIONS

- Specifications reached : Operational full-scale needle-shaped CMOS active pixel sensor
 - Low power dissipation for the whole probe : 161 µW
 - Suitable for the expected low activity

REFERENCES