Measuring b-tag performance with data: mistags

Daniel Bloch, Jérémy Andrea

- Based on Tevatron experience, set a strategy to evaluate b-tagging and light (udsg)-tagging efficiencies using, as much as possible, the “real” Data themselves.

- Of course in CMS, it can be seen as an academic exercise, but one can look in the Monte-Carlo, with the present b-taggers, if such a strategy is reliable or not.

- Main motivation at Tevatron: the MC overestimates the tagging efficiencies by ~20-30%.

- One can hope that it will not be the case in CMS after a few years of running, but at least at the beginning, the strategy may be as follows: one can distinguish 3 steps
Step 1: “Taggability”

- Taggability = efficiency for a jet to have enough tracks pointing to the primary vertex
- following Phys.TDR1-12.2.1.1, one can require at least 2 tracks with $p_T > 1$ GeV, $|\Delta R| < 2$ mm, ≥ 8 hits, etc.... (should be the same for all lifetime taggers!)

- In real Data: the taggability can be computed using multi-jet triggers, or electromagnetic triggers, or using high p_T lepton triggers and relaxing the lepton-id requirements.

- Taggability is parametrized versus jet p_T and η (with factorization)
- It should not depend (too much) on the jet flavour

- Systematics are estimated by comparing different data samples, varying some cuts, ...: usually they are around ±2-3%

- Note that in DØ, the ratio between Data and MC is found to be $\frac{\text{taggability(Data)}}{\text{taggability(MC)}} \approx 0.85$... (which justifies this step 1)
Taggability in MC

- RunTrackCounting in BReco/BtagPTDR/test from ORCA_8_13_3
- Use qcd MC (ORCA_8_7_1) 250k events with pt in range 50-80 + 80-120 + 120-170 + 170-230
- Significant difference between uds and (c/b or g) jets? (but same behaviour with “physics” or “algorithmic” definitions, see next slide)
- Is the MC too optimistic anyway?
How to assign a flavour to jets?

(at least) 2 ways (cf. Phys.TDR1-12.2.1.2):

1. "physics" definition:
 - Consider all initial partons associated to jets within $\Delta R<0.3$.
 - Set flavour = 0 if no initial parton found (may be a radiative gluon).
 - Used for lifetime taggers (but large amount of flavour = 0...)

2. "algorithmic" definition:
 - Set "b" if final b-quark found within $\Delta R<0.3$.
 - Otherwise set "c" if c-quark is found.
 - Otherwise set "uds" or "g".
 - Used here because all jets are used in real life...

- Some flavour = 0 may remain if jet from pile-up event or tau-jet or noise...

- Note that here: jets with $g\rightarrow bb$ splitting are called "b"
 and jets with $g\rightarrow cc$ splitting are called "c" (if not already "b")
Jet flavour in qcd MC (cont.)

Algorithmic

Track multiplicity smaller in uds than in g-jets

Physics

Large fraction of flavour=0

D. Bloch (IPHC Strasbourg) May 11, 2006
Step 2: parameterizations

- For each jet of a given flavour, the tagging efficiency is then defined as:
 \[\varepsilon_{\text{tag}} = \frac{\text{number of tagged jets}}{\text{number of taggable jets}} \]

- As the MC may not describe well the Data, the tagging efficiencies are:
 1. Computed for a limited set of working points (wp) : for instance corresponding to some average mistag rates of 0.1%, 0.3%, 0.5%, 1%, 2% and 4%
 2. Mainly estimated from the Data (see below for the mistags)
 3. Then parameterized: Tag Rate Function
 \[\text{TRF} = \varepsilon_{\text{tag}}(pt, \eta, \text{flavour,wp}) \]
 Some physics analyses may also prefer to use Scale Factors
 \[\text{SF}(pt, \eta, \text{flavour,wp}) = \frac{\varepsilon_{\text{tag}}(\text{Data})}{\varepsilon_{\text{tag}}(\text{MC})} \]
 (with pt / \eta factorization)
Step 3: analysis

- **For the real Data**: apply the tagger to each jet

- **For the MC**: weight each jet of a given flavour by the product of its trigger efficiency \(pt, \eta \) taggability \(pt, \eta \) and \(TRF(pt, \eta, \text{flavour},wp) \) (or \(SF(pt, \eta, \text{flavour},wp) \))
Mistag estimate

- Use a sample of real Data with a “small” contamination of b/c jets: consider multi-jet trigger Data for instance

- Then apply the tagger by only using tracks (or secondary vertices) with negative significance (tracks with IP/σ < 0 or SV with ΔL/σ < 0)

- The qcd MC is used to apply a correction \(SF_i \):

\[
\varepsilon_{\text{tag}}^{\text{Data (udsg)}} = \varepsilon_{\text{neg}}^{\text{Data (total)}} \times SF_i
\]

with

\[
SF_i = \frac{\varepsilon_{\text{tag}}^{\text{MCqcd (udsg)}}}{\varepsilon_{\text{neg}}^{\text{MCqcd (total = udsg+c+b)}}}
\]

- Systematics are of various sources:
 - observed difference in negative tag rates between different real Data samples: \(\sim \pm 2\text{-}3\% \) (at least in DØ) but neglected here
 - fraction of remaining b/c jets after negative tags in the qcd MC: see below, and vary these fractions by ±20%
 - difference between uds and g-jets? vary gluon fraction by ±10%
In the present BReco, negative significances are only available with the track counting method. This requires 2 or 3 tracks with $IP/\sigma > \text{cut value}$.

- Note that IP/σ is the same for uds and g jets ($g \to bb$ or cc are assigned as b or c-jet).
• Use qcd MC with here $50<pt<120$ GeV, $|\eta|<1.4$

• One can require ≥ 2 or ≥ 3 tracks with $IP/\sigma >$ cut

• Get similar performance than in Note 2006/019 (Fig.8)

• (here only, the efficiency is computed w.r.t all jets, not only the taggable ones)
• In fact the b-tag performance doesn’t seem to depend too much on the flavour definition.
Mistags (cont.)

- Choose a working point: n=2 with IP/σ>2.5 for instance
- qcd MC: fraction of c and b jets before and after negative tagging
- Scale Factor SF_{l} (l = udsg) : close to 1.3
- different in uds-jet and g-jet
- udsg positive tag efficiency and overall negative tag rate

D. Bloch (IPHC Strasbourg) May 11, 2006
• For this working point ≥ 2 tracks with IP/$\sigma > 2.5$

• g-jet tagging efficiency slightly larger than for uds-jets (due to the larger track multiplicity I guess)
• In QCD MC, here if $50 < p_T < 120$ GeV

• displayed versus the light=udsg tag efficiency (for any working point): one has to use (see slide 10) $n=2$ if $\varepsilon_{\text{tag}} > 10^{-2}$
 $n=3$ if $\varepsilon_{\text{tag}} < 10^{-2}$

• for $n=3$, $\varepsilon_{\text{tag}} \approx 10^{-2}$:
 $\sim 12\%$ b and $\sim 8\%$ c in negative tag jets
• The gluon fraction also affects \(SF_I = \frac{\varepsilon_{\text{tag}}(\text{udsg})}{\varepsilon_{\text{neg}}(\text{udsg+c+b})} \).

• Here \([\text{d}SF_I / SF_I] / [\text{df}_g / f_g]\) is shown, where \(\text{df}_g / f_g\) is the uncertainty on the gluon fraction, i.e. it has to be scaled by 0.1 if \(\text{df}_g / f_g = \pm 10\%\).
Mistag systematics

- The uncertainties on the b and c fractions are assumed to be ±20%, and fully correlated.

- The uncertainty on the gluon fraction is assumed to be ±10% (and not correlated with the b and c fractions).

- With the track counting method and $n=3$, one gets an overall systematic of about ±6% if $\varepsilon_{\text{tag}}^l = 10^{-2}$, ±16% if $\varepsilon_{\text{tag}}^l = 10^{-3}$ if 80<pt<120 GeV.
Mistag syst. (cont.)

- Idem in lower pt bins: systematics are somewhat smaller
Conclusion and outlook

• Based on the track counting method and qcd MC, the mistag systematics have been evaluated:
 for jets within $30 < pt < 50 \text{ GeV}$, $50 < pt < 80 \text{ GeV}$, $80 < pt < 120 \text{ GeV}$:
 \[
 \text{if } \varepsilon_{\text{tag}} = 10^{-2} \quad \pm 5\% \quad \pm 4\% \quad \pm 6\%
 \]
 \[
 \text{if } \varepsilon_{\text{tag}} = 10^{-3} \quad \pm 10\% \quad \pm 11\% \quad \pm 16\%
 \]

• Extending this mistag estimate to all lifetime taggers would require to run the track probability and the combined-tag methods with negative IP or with negative decay length only...
 (and for consistency with positive ones too !):
 i.e. 2 possibilities per algorithm:
 negative significance only or positive significance only
 which have to be implemented in BReco