Distribution of uranium and thorium in Timahdit’s Moroccan black shale

C. Galindo, L. Mougin, S. Fakhi, A. Nourreddine

Institut Pluridisciplinaire Hubert Curien
Strasbourg, France

Laboratoire de Radiochimie (LRC)
Faculté des Sciences Ben M’sik, Casablanca, Morocco

Catherine.Galindo@ires.in2p3.fr
Outline

Context

Mineralogical characterization of the black shale
 SEM, XRD

Radiochemical analysis of the black shale
 Raw material
 Results of sequential extractions

Conclusion
Introduction

• **Black shales ⇒ new adsorbents**
 ⇒ removal of organic substances, heavy metals and bacterium
 ⇒ removal of radionuclides (U, Th)

• **Radioactive elements more concentrated in black shales than in other sedimentary lithologies**
 ⇒ Release of U, Th into the ecosystem during thermal processing or chemical activation

• **Purpose of the present work:**
 ⇒ *To define the modes of occurrence of U and Th in the raw material.*
Origin: the Maastrichtian age

This deposit is a vein of schist 100-150 m thick

The studied layer is the richest in organic matter (17%: kerogen, humic acids)
Mineralogical characterization of the black shale (SEM, XRD)

Clays (illite, kaolinite, smectite)

- Illite
- Quartz
- Dolomite
- Calcite
- Hydroxy-apatite
- Pyrite
- No iron or manganese oxyhydroxides
Radiochemical analysis & Experimental procedure

- raw material (1g)
 - calcination
 - fusion (NaOH/Na₂O₂)
 - coprecipitation (Fe(OH)₃)

- AG1X4 resin
 - 10M HCl
 - 1M HNO₃

- AG1MP1 resin
 - 8M HNO₃ (wastes)
 - 10 M HCl

- Uteva resin
 - 2M HNO₃ (wastes)
 - 5M HCl
 - 10M HCl

- electrodeposition
 - α-counting

PIPS detectors
FWHM = 25 keV
Radiochemical analysis of the raw material

Authigenic uranium:

\[[U_a] = [U] - \frac{[Th]}{3} \]

\(U_a = 96\% \) of the total uranium

\(\Rightarrow \) deposition under reducing conditions

Wignall P.B., Meyers K.J., 1988, Geology, 16, 452-455
Sequential extractions

- **F1**: Deionised water
 - Water soluble fraction
- **F2**: 1M MgCl₂
 - Exchangeable fraction
- **F3**: CH₃COONa - pH = 4.75
 - Bond to carbonates
- **F4**: 0.04M NH₂OH.HCl, 25% CH₃COOH
 - Bond to iron oxyhydroxides
 - Bond to apatite
- **F5**: H₂O₂ - HNO₃ - pH = 2
 - Bond to organic matter and accessory minerals
- **F6**: Residue
 - Bond to silicates

Solid/solution: 1/10

U and Th measurement

- Calcination
- Fusion (NaOH/Na₂O₂)
- Coprecipitation (Fe(OH)₃)
- AG1X4 resin
- AG1MP1 resin
- Uteva resin
- Electrodeposition
- α-counting

Th → electrodeposition ← U
Results of sequential extractions

Distribution of 238U in the black shale

- **F1**: water soluble fraction
- **F2**: exchangeable fraction
- **F3**: carbonates
- **F4**: apatite
- **F5**: organic + pyrite
- **F6**: silicates

- Water-soluble organic complexes: < 1%
- Carbonates: 10%
- Apatite: 8%
- Kerogen + pyrite: 3%
- Organic matter (humic acids): 75%
- Silicates: 3%
Results of sequential extractions

Mobilization of ^{234}U

- « organic » fraction
- Carbonates
- Apatite

- Activité (Bq.kg$^{-1}$)
- Activité (Bq)$^{-1}$
- Carbonates
- Apatite
Results of sequential extractions

Distribution of ^{232}Th in the black shale

- **^{232}Th : detrital input**

- **Silicates : 49%**

- **kerogen + accessory minerals: 51%**

- **carbonates, apatite : $A_{^{232}\text{Th}} < \text{DL}$**

Diagram:

- Raw material
- F1: Water soluble fraction
- F2: Exchangeable fraction
- F3: Carbonates
- F4: Apatite
- F5: Organic + pyrite
- F6: Silicates

Graph showing the distribution of ^{232}Th across different fractions. The bar graph indicates that the highest percentage of ^{232}Th is found in the silicate fraction, followed by carbonates and organic + pyrite fractions.
Conclusion

- Characterization of a Timahdit’s black shale in terms of ^{238}U, ^{234}U, ^{235}U, ^{232}Th, ^{228}Th, ^{230}Th repartition

- Deposition under anoxic environment

- Distribution:
 - U \Rightarrow humic acids
 - $^{232}\text{Th} \Rightarrow$ silicate minerals and pyrite

- Chemical behaviour of U and Th, alpha decay related processes are widely responsible for disequilibria in the uranium decay series
The End

With Many Thanks