Development of CMOS Pixel sensors (CPS) for vertex detectors in present and future collider experiments

Auguste Besson
On behalf of IPHC-Strasbourg group (CNRS & Université de Strasbourg)

• CMOS pixels sensors
 ➢ Main features and state of the art
 ➢ STAR PXL detector
 ➢ ILD VTX detector

• Toward new applications
 ➢ 0.18 μm technology
 ➢ ALICE ITS upgrade
 ➢ Lab & beam test results

• Summary
CMOS pixel sensor (CPS) for charged particle detection

- **Main features**
 - Monolithic, p-type Si
 - Signal created in low doped thin epitaxial layer \(\sim 10-20 \mu m\)
 - \(\sim 80 \text{e-} /\mu m\) \(\Rightarrow\) total signal \(\sim O(1000 \text{e-})\)
 - Thermal diffusion of e-
 - Limited depleted region
 - Interface highly P-doped region: reflection on boundaries
 - Charge collection: N-Well diodes
 - Charge sharing \(\Rightarrow\) resolution
 - Continuous charge collection
 - No dead time

- **Main Advantages**
 - Granularity
 - Pixel pitch down to \(10 \times 10 \mu m^2\) \(\Rightarrow\) spatial resolution down to \(\sim 1 \mu m\)
 - Material budget
 - Sensing part \(\sim 10-20 \mu m\) \(\Rightarrow\) whole sensor routinely thinned down to 50 \(\mu m\)
 - Signal processing integrated in the sensor
 - Compacity, flexibility, data flux
 - Flexible running conditions
 - From \(\leq 0^\circ C\) up to 30-40\(^\circ C\) if necessary
 - Low power dissipation \((\sim 150-250 \text{mW/cm}^2)\) \(\Rightarrow\) material budget
 - Radiation tolerance: \(\gg 100s \text{kRad and } O(10^{12} \text{neq}) \Rightarrow f(T,pitch)\)
 - Industrial mass production
 - Advantages on costs, yields, fast evolution of the technology, Possible frequent submissions

- **Main limitation**
 - Industry addresses applications far from HEP experiments concerns
 - Different optimisations on the parameters on the technologies
 - Recently: new accessible processes:
 - Smaller feature size, adapted epitaxial layer
 - Open the door for new applications
State of the art (1)

- IPHC-Strasbourg and collab.
 - CPS developed since ~ 1999
 - Typical performances in AMS 0.35 μm technology
 - Detection efficiency $\geq 99.9\%$ with fake rate $\leq 10^{-5}$
 - Typical spatial resolution (20 μm pitch):
 - $\sim 1.5 \mu m$ (analog output)
 - $\sim 3.5 \mu m$ (digital output)

- Read-out architecture with digital output
 - In pixel preamplification and CDS
 - Column parallel rolling shutter read-out
 - Continuous read-out
 - Integration time = #rows x row r.o. time (100ns)
 - End-of-columns discriminators
 - Data sparsification (0-suppression)
 \Rightarrow enhances r.o. speed with preserving material budget, granularity and power consumption
State of the art (2): current applications

• EUDET pixel telescope
 - Beam telescope (FP6 project)
 - 6 x Mimosa-26 planes (// r.o. and dig output)
 - Successfully operating since 2008

• STAR PXL detector
 - First vertex detector equipped with CPS
 - 2 layers = 40 ladders x 10 sensors
 - First sectors (3/10) installed May 2013
 - Commissioning completed
 - End of construction under way

• Prototype: Mimosa-28 (Ultimate)
 - AMS 0.35 μm techno with high resistivity epitaxial layer
 - 960 x 928 pixels, 20.7 μm pitch ⇒ 3.8 cm²
 - In pixel CDS & ampli, column parallel read-out
 - End of column discrim. and binary charge encoding
 - On chip zero suppression
Mimosa-28 (=Ultimate) performances

- Operating conditions
 - JTAG + 160 MHz
 - Temperature
 - 35°C
 - Read-out time = 200 μs
 - Suited to ≥ 10⁶ part/cm²/s
 - Power consumption
 - 150 mW/cm²

- Performances
 - Noise ~ 15 e⁻ ENC @ 35°C
 - Eff vs fake rate
 - Spatial resolution
 - charge sharing
 - σ_sp ≥ ~ 3.5 μm
 - Radiation tolerance
 - 3.10¹² n_eq/cm² + 150 kRad @ 35°C

⇒ reached performances meets specifications
CPS and vertex detector optimisation: squaring the circle

- **Vertex detector design and specifications**
 - Physics performances
 - Spatial resolution
 - Material budget ↔ multiple scattering
 - Experimental environment constraints
 - Radiation hardness (ionising and non ion. rad.)
 - Occupancy ↔ Read-out speed
 - Power dissipation ↔ cooling?
 - Other parameters
 - Costs, fabrication reliability and flexibility
 - Mechanical integration
 - Geometry
 - Alignment issues

- **Interdependence of these parameters**
 - e.g. lower radius of inner layer
 - Better $\sigma_{\text{i.p.}}$ but larger occupancy, higher rad.
 - Needs higher read-out speed and/or granularity ⇒ power dissipation

⇒ CPS presents an attractive trade off with respect to all these parameters
An example of vertex detector optimisation: ILD @ ILC

- **Baseline:** (cf. ILC - Detector Baseline Document)
 - Spatial resolution/material budget \(\sigma_b < 5 + 10/\rho \beta \sin^{3/2} \theta \mu m. \)
 - Occupancy 1st layer: ~ 5 part/cm^2/BX \(\Rightarrow \) few % occupancy max
 - Radiations: O(100 krad) et O(1x10^{11} n_{eq} (1MeV)) / year
 - Power dissipation: 600W/12W (Power cycling, ~3% duty cycle)

- **Proposed geometry:**
 - 3 x double sided ladders
 - Optimize material budget / alignment.

- **2 designs:**
 - Double sided inner ladders:
 - Priority to r.o. speed & spatial resolution
 - 2 faces: resolution / speed (elongated pixels)
 - Pitch 16x16\(\mu m^2\)/ 16x64\(\mu m^2\) + binary charge encoding
 - \(t_{\text{read-out}} \sim 50\mu s/10\mu s\); \(\sigma_{\text{res}} \sim 3\mu m/6\mu m\)
 - 2012: Mimosa-30 prototype (AMS 0.35 \(\mu m\))
 with 2 sided read-out
 - Outer ladders: power dissipation
 - Minimize \(P_{\text{diss}}\) while keeping good spatial resolution
 - Pitch \(\sim 35x35\ \mu m^2\) + ADC 3-4 bits
 - \(t_{\text{read-out}} \sim 100\ \mu s\)
 - 2012: Mimosa-31 prototype (AMS 0.35 \(\mu m\))
 with 4-bit ADC
Toward new applications
Upgrade for more demanding applications

- CPS are also considered by forthcoming projects
 - CBM @ FAIR (>2016): baseline
 - ILD @ ILC@ 500 GeV: TDR option
 - ALICE @ LHC: baseline for ITS upgrade

<table>
<thead>
<tr>
<th></th>
<th>$\sigma_{\text{single point}}$</th>
<th>read-out time</th>
<th>TID</th>
<th>Fluence n_0/cm2</th>
<th>T_{coolant} °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAR-PXL</td>
<td>5 µm</td>
<td>~200 µs</td>
<td>150 kRad</td>
<td>3×10^{12}</td>
<td>30</td>
</tr>
<tr>
<td>future projects</td>
<td>3-5 µm</td>
<td>1-30 µs</td>
<td>up to 10 MRad</td>
<td>up to 10^{14}</td>
<td>< 0 - 30</td>
</tr>
</tbody>
</table>

⇒ higher particles rates

- ILC motivations
 - Robustness with respect to predicted beam background ⇒ occupancy
 - Capabilities to stand the increased occupancy @ 1 TeV (x3-5)
 - Stand alone tracking capabilities (low momentum tracks)

- How to improve read-out speed?
 - Elongated pixels (+staggered pixels)
 - Less row per column
 - Allow in pixel discriminator ⇒ r.o \geq 2 x faster
 - More parallelisation
 - 2 or 4 rows read out simultaneously ⇒ r.o \geq 2-4 x faster
 - Sub arrays read out in // ⇒ r.o \geq 2-4 x faster
 - Only possible in smaller feature size process (0.18 µm) see next slide
Evolving to an optimal process: Tower-Jazz 0.18 μm

• CMOS 0.35μm process does not allow to fully exploit the potential of CPS

• Main limitations of 0.35μm:
 - Feature size ⇒ in pixel circuitry, r.o. speed, power consumption, radiation hardness
 - Number of metal layers ⇒ in pixel circuitry, r.o. speed, insensitive area
 - Clock frequency ⇒ data output
 - Epitaxial layer flexibility: (thickness and resistivity) ⇒ Charge collection/sharing

• Tower-Jazz 0.18 μm
 - Smaller feature size process
 - Stitching ⇒ multi chips slabs (yield ?)
 - 6 metal layers ⇒ in pixel discrim.
 - Deep P-well ⇒ small pitch in pixel discrim.
 - higher epitaxial resistivity (1-6 kΩ.cm), epi thickness 18-40 μm
 ⇒ Enhances signal
 ⇒ Higher read-out speed, higher radiation tolerance
 ⇒ Faster and smarter pixels
Validation of the 0.18μm technology roadmap

- **Goal:** ALICE ITS upgrade (cf. TDR draft) ⇒ scheduled for 2017-18 LHC shutdown
 - Additional L0(22mm) + replacement of inner layers
 - Scheduled for 2017-18 LHC long shutdown
 - (See talks by Beolè and Bufalino)
 - 0.25-1 MRad + 0.3-1x10^{13} n_{eq}/cm^2
 - Chip sensitive area 1x3 cm^2
 - Inner layers ⇒ 0.3% X0
 - Spatial resolution ~ 4 μm
 - Read-out speed ~ 10-30 μs

- **STEP 1 (2012): First prototypes** ⇒ Validation of MIP detection performances

- **STEP 2 (2013):**

- **STEP 3 (2014-15):** 2 strategies
 - **MI STRAL**
 - Col. // read-out with in pixel ampli.
 - Simultaneous 2 rows encoding (x2 faster)
 - Read-out speed ~ 30 μs
 - **ASTRAL**
 - In pixel discri & 2/4-row encoding
 - 2-4 x faster than M22THR ⇒ r.o. speed ~ 10-20 μs
 - P_{diss} ~< 150-200 mW / cm^2
Validation of the 0.18µm technology roadmap

- **Goal:** ALICE ITS upgrade (cf. TDR draft) ⇒ scheduled for 2017-18 LHC shutdown
 - Addionnal L0(22mm) + replacement of inner layers
 - scheduled for 2017-18 LHC long shutdown
 - (See talks by Beolè and Bufalino)
 - 0.25-1 MRad + 0.3-1x10^{13}n_{eq}/cm^2
 - Chip sensitive area 1x3 cm^2
 - Inner layers ⇒ 0.3% X0
 - Spatial resolution ∼ 4 µm
 - Read-out speed ∼ 10-30 µs

- **STEP 1 (2012):** First prototypes
 ⇒ Validation of MIP detection performances

- **STEP 2 (2013):**

- **STEP 3 (2014-15):** 2 strategies
 - MI STRAL
 - Col. // read-out with in pixel ampli.
 - Simultaneous 2 rows encoding (x2 faster)
 - Read-out speed ∼ 10-30 µs
 - ASTRAL
 - In pixel discr & 2/4-row encoding
 - 2-4 x faster than M22THR
 - P_{diss} ∼< 150-200 mW / cm^2

- Engineering run Tower 0.18 µm
 - Read-out architecture
 - Mimosa-22THRA1/A2 (1l)
 - Mimosa-22THR (2l)
 - (next slides)
 - Pixels architecture
 - Noise: Mimosa-32N1/N2
 - Optimisation Mimosa-32FEE
 - Pixels/diodes dim.: Mimosa-34
 - Charge encoding
 - AROM-0 (1bit)
 - MI MADC (3bits)
 - Sparsification
 - SUZE-02
 - (next slides)

14th ICATPP Conference, 2013
Auguste Besson
STEP 1: Tower-Jazz 0.18 µm

- 2012: First prototypes (M32 & M32ter)
 - Validation of MIP detection performances (120 GeV/c Pions @ CERN)
 - Charge collection properties, pitch, in pixel amplification, CDS, etc.
 - Beam test: SNR & det.eff. 20 µm pitch (1MRad, 10^{13} n$_{eq}$/cm2 @ 30 °C)
 - Remaining room for improvement
 - Suspected RTS noise
STEP 1: Resolution with digital output

- Resolution obtained from analog data + simulated binary charge encoding
 - Spatial resolution vs discriminator threshold scan

<table>
<thead>
<tr>
<th>Pixel Dim. [μm^2]</th>
<th>20 x 20</th>
<th>22 x 33</th>
<th>20 x 40</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ_{sp}^{bin} [μm]</td>
<td>3.2 ± 0.1</td>
<td>5.1 ± 0.5</td>
<td>5.4 ± 0.1</td>
</tr>
</tbody>
</table>

← expect ~ 2.8 μm for 17 x 17 μm^2 pixels (ILD-DBD)
STEP2: Read-out architecture ⇒ M22 THRA1 results

• MIMOSA-22THRA1 design (adapted from M28-STAR)
 - 128 col. x 320 rows (22x22/33 \(\mu\)m\(^2\))
 ➢ + end of col. discr
 - 8 col. with analog output for tests
 - Rolling shutter (single row) read-out
 ➢ \(t_{r.o.} \sim 50\ \mu\)s
 - RTS noise optimisation:
 ➢ enlarged preamp T gate
 - 4 different submatrices
 ➢ Study RTS
 - Different epitaxial layers
 ➢ 18\(\mu\)m(HR18), 20\(\mu\)m(HR20), etc.

• Beam Test (5GeV e\(^-\) @ DESY)
 - Det.Eff. \(\geq\sim 99.5\ %\) with fake \(\leq 10^{-5}\) (lab test)
 ➢ Few \(10^{-3}\) inefficiency may come from track-hit mismatch (under investigation)
M22 THRA1 results: digital part

- Fixing the Noise tail
 - Enlarge pre-amp transistor gate dimension
 - Right: L/W = 0.18/1 μm → Tail
 - Left: L/W = 0.36/1 μm
 - TN ~ 17 e^-

- Efficiency - fake rate
 - vs discr threshold scan
 - Different epitaxial layers thicknesses
 - 18 μm (HR18), HR20, HR30
M22 THRA1 results: analog part (S2)

- Analog part of M22 THRA1 → HR18 @ 30°C:
 - SNR of cluster seed pixel ~ 34 (in agreement with M32ter values)
Step 2: Pixel optimization ⇒ M34 results

- Mimosa 34: explores various pixel dimensions (pitch, diode, etc.)
 - Different epitaxial layer thickness 18μm (HR18), 20μm (HR20)
 - Signa-to-Noise ratio distribution
 - e.g. 22x33 μm² (2T) pixels @ 30 °C
 ⇒ ~0.1% of cluster with SNR <8

⇒ diode size optimisation ⇒ 8 μm² preferred
Summary

- CPS have reached a level of maturity which allow them to equip vertex detector of HEP experiments whose specifications are governed by:
 - Spatial resolution, material budget, power dissipation and costs.
 - 0.35 μm technology already suited for STAR-PXL, ILC@ 500 GeV, etc.

- 0.18 μm technology will allow to exploit fully the potential of the technology
 - Promising results on first prototypes
 - More demanding applications are now possible
 - Faster read-out O(few μs), enhanced rad. tol. O(10^{14} n_{eq}/cm^2 + 10MRad @ 30°C)
 - ILC @ 1 TeV, ALICE-ITS upgrade, CBM@ FAIR, ALDA beam telescope, etc.

- 0.18 μm roadmap
 - 2013: validation of upstream and downstream sensor elements
 - 2014-15: validation of complete sensor architecture (1cm^2 ASTRAL/MISTRAL proto)
 - 2015-16: preproduction of ASTRAL/MISTRAL sensors ⇒ CBM, ALICE
 - 2017-19: adapt MISTRAL/ASTRAL for ILC-VTX detector
Back up
Applications of CPS : ALICE-ITS Upgrade

- ITS upgrade: scheduled for "2017-18" LHC long shutdown
 - see talk of M. Sitta
 - exploits space left by replacement of beam pipe
 with small radius (19 mm) section
 - addition of L0 at \(\sim 22 \) mm radius to present ITS
 & replacement of (at least) inner part of present ITS
 - 1st tracker entirely composed of pixel sensors:
 - 7 layers with pixels: \(\gtrsim 9 \text{ m}^2 \), \(O(10^{10}) \) pixels!
 - material budget of inner layers \(\sim 0.3 \% X_0 \)

- Differences w.r.t. ULTIMATE/MIMOSA-28:
 - \(\sim 0.25/1 \) Mrad & \(0.3/1 \cdot 10^{13} \text{ n}_{\text{eq}}/\text{cm}^2 \) at \(T = 30^\circ\text{C} \) (target values)
 - \(0.18 \ \mu m \) 4-well HR-epi techno. (Instead of \(0.35 \ \mu m \) 2-well hR-epi)
 - \(\sim 1 \times 3 \text{ cm}^2 \) large sensitive area (instead of \(2 \times 2 \text{ cm}^2 \))
 - parallelised rolling-shutter (pot. in-pixel discri.) \(\Rightarrow \sim 10-30 \ \mu s \)
 - 1 or 2 output pairs at \(\gtrsim 300 \text{ MHz} \) (instead of 1 output pair at 160 MHz)
 - \(\sigma_{sp} \sim 4 \ \mu m \); ladders \(\sim 0.3 \% X_0 \)

 الفني

- CDR approved by LHCC in Sept. 2012 \(\Rightarrow \) TDR Draft-1 close to release
- 2 alternative sensors developed at IPHC: MISTRAL (end-of-col discri) & ASTRAL (in-pixel discri)
0.35 μm limitations

<table>
<thead>
<tr>
<th>CMOS process fab. parameters</th>
<th>In-pixel circuitry</th>
<th>Read-out speed</th>
<th>Power consum.</th>
<th>Insensitive areas</th>
<th>TID (> ILC)</th>
<th>Data throughput</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feature size</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Planar techno.</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb (metal layers)</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clock frequency</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Expt-System</th>
<th>σ_t</th>
<th>σ_{sp}</th>
<th>TID</th>
<th>Fluence</th>
<th>T_{op}</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAR-PXL</td>
<td>$\lesssim 200 \mu s$</td>
<td>$\sim 5 \mu m$</td>
<td>150 kRad</td>
<td>$3 \cdot 10^{12} \text{ n}_{eq}/\text{cm}^2$</td>
<td>30°C</td>
</tr>
<tr>
<td>ALICE-ITS</td>
<td>10-30 μs</td>
<td>$\sim 5 \mu m$</td>
<td>700 kRad</td>
<td>$10^{13} \text{ n}_{eq}/\text{cm}^2$</td>
<td>30°C</td>
</tr>
<tr>
<td>CBM-MVD</td>
<td>10-30 μs</td>
<td>$\sim 5 \mu m$</td>
<td>$\lesssim 10 \text{ MRad}$</td>
<td>$\lesssim 10^{14} \text{ n}_{eq}/\text{cm}^2$</td>
<td>$\ll 0^\circ \text{C}$</td>
</tr>
<tr>
<td>ILD-VXD</td>
<td>$\lesssim 10 \mu s$</td>
<td>$\lesssim 3 \mu m$</td>
<td>O(100) kRad</td>
<td>O(1011) $\text{ n}_{eq}/\text{cm}^2$</td>
<td>$\lesssim 30^\circ \text{C}$</td>
</tr>
<tr>
<td>SuperB-SVT</td>
<td>$\lesssim 2 \mu s$</td>
<td>$\sim 10 \mu m$</td>
<td>5 MRad/yr \times SF</td>
<td>$5 \cdot 10^{12} \text{ n}_{eq}/\text{cm}^2/\text{yr} \times$ SF</td>
<td>$\lesssim 10^\circ \text{C}$</td>
</tr>
</tbody>
</table>
FPN of 2-row r.o. (2 discr./col.):

- concern: analog/digital signals coupling \(\Rightarrow \) FPN
- Measured FPN (dblle-row) \(\lesssim 5 \text{ e}^- \text{ENC} \)
 \(\Rightarrow \) FPN (sngle-row) \(\lesssim 3 \text{ e}^- \text{ENC} \)
 \(\Rightarrow \) Marginal noise increase
Deep P-well
MI STRAL
HR 18 vs HR 20

MIMOSA 34, Signal/Noise

Pixel 22x33 μm² diode 11 μm at $T_{cool} = 30°C$

- epi. HR 18 μm, MPV = 43.6 ± 0.5
- epi. HR 20 μm, MPV = 44.9 ± 0.1