Fully depleted CMOS Pixel Sensor (CPS) development and potential applications

Jérôme Baudot, Maciej Kachel, Barbara Bensimon and Wojciech Dulinski†
For the PICSEL group

CPS assets & properties
Options for fully depleted CPS
Prototypes of HR-CPS
Conclusion & outlooks

ANIMMA, 20-24 April 2015
Lisboa
CMOS Pixel Sensors assets

- **A digital camera for cell phone**
 - Low power, μm-size pixel, low cost, smart
 - Ultra-dominant application → drives industry development

- **Scientific CMOS**
 - Very sensitive & fast (100-1000 fps) camera
 - Exploit in-pixel amplification & embedded treatment

- **Radiation sensors**
 - Charge particle counters
 - Trackers for High Energy Physics
 - high granularity, sparse r-o, low power
 - easy integration, lower cost
 - Dosimeters

→ **Other applications ?**
First CPS for HEP

- **Requirements from Heavy Ion Collisions**
 - low material budget, include low power dissipation
 - granularity beyond strip
 - moderate radiation tolerance
 - In-line with ILC-spec (except for \(\sigma_{s.p.} \))

- **The STAR PXL (operating since 2014)**
 - Ultimate/MIMOSA-28 sensor from IPHC
 - Binary rolling-shutter read-out
 - AMS 0.35 \(\mu \)m CMOS technology
 - 400 sensors \(\rightarrow \) 360x10^6 pixels
 - Air flow cooling Top \(\leq 35 \) °C
 - \(\sigma_{s.p.} \approx 4 \) \(\mu \)m
 - mat. budget = 0.39 % \(X_0 \) / layer
 - 2 layers: \(r = 2.5 \) & 8 cm

+ CPS in dev. for ALICE-ITS upgrade (10 m²)
Charge collection properties

- **The basic working principle**
 - Secondary charges generated in epitaxial layer
 - For ionizing part. → signal ∝ epi-thickness
 - Charges transport driven by 3 potentials
 - P-well / collection node / P++ substrate
 - Usually ground / few Volts / ground
 - Transport = mix of diffusion and drift
 - Ratio depends on electric fields

- **Electric fields in epi-layer?**
 - Front depleted area depends on
 - $\sqrt{V_{N\text{-well}} \times \text{epi-resistivity}}$
 - Pixel pitch (= density of coll. nodes)
 - Back-side field extension depends on
 - Doping gradient from substrate to epi
 - Note: if epi thick enough
 - Middle region with no field

- **Typical epi thickness**
 - 10 to 40 µm

- **Low resistivity epi**
 - resistivity < 100 Ω.cm

- **High resistivity epi**
 - 100 Ω.cm ≪ resistivity
 - Few kΩ.cm available
Sensor global properties 1/2

- **A hit = cluster of fired pixels**
 - Cluster extension ➔ with depletion ➔

- **Detection efficiency**
 - Driven by largest pixel-SNR
 - Benefit from small cluster

- **Single point resolution**
 - Driven by pixel pitch
 - Benefits from large cluster
 - Exploit Q center of gravity

![MIMOSA-26 sensors](image)

MIMOSA-26 sensors (forerunner of MIMOSA-28)

Mimosa resolution vs pitch

-Maryland Sensors [2015]

J. Baudot - Fully depleted CPS - ANIMMA April 2015
Sensor global properties 2/2

- **Non-ionizing radiation tolerance**
 - Limited by signal collection time
 - Prob. Trapping by crystal defects \propto time
 - Benefits from high diode density (pixel-SNR)

- **Energy resolution**
 - Poor with cluster > 1 pixel
 - Noise $\propto \sqrt{\text{#pixels}}$
 - Pixel-to-pixel gain variation

- **Back-side illumination**
 - Industrial process
 - Thinning down to epi-layer
 - Passivation to re-create substrate effect

- **Single particle sensitivity**
 - Minimum ionizing particle
 - 80 e-h/µm
 - Low energy particles + Photons (stopping in few µm of Si)
 - Total charge OK \sim E
 - Reaching the epi layer?
Motivation for depleted CPS

- **High energy physics trend**
 - Tolerate high non-ionizing part. Fluences $10^{15} \text{n}_{eq}/\text{cm}^2$ (tracker / vertex)
 - Integration time $\ll \mu$s

- **X-rays detection**
 - Require thickness (Beer-Lambert attenuation law)
 - Require equivalent collection properties all over epi-layer

- **Fully depleting the sensitive layer is a key**
 - However situation different / sensors for hybrid-systems (CERN-RD50)
 - Same substrate embed sensitive and first amplification layer

- **Open questions**
 - Which structure to enforce depletion?
 - Depth & uniformity on chip area
 - impact on in-pixel treatment μ-circuits?
 - Noise, transistor behavior
Way 1: High Voltage

- **Experiments**
 - ATLAS, µ2e, CLIC
 - Groups in Bonn, CERN, Genève, Heidelberg, Karlsruhe, Marseille...
 - new collab. ➔ CERN-RD53

- **Concept**
 - Low resistivity (10-20 Ω.cm)
 - High Voltage applied few 10s V
 - HV-compliant CMOS technologies

- **HV-CMOS**
 - Deleted depth demonstrated 5 to 15 µm with 60-70V
 - Fast amplification ~ 1 µs
 - Only 30% signal loss after 10^{15} n$_{eq}$/cm2

- **HV-SOI**
 - Depleted depth demonstrated 40-50 µm with 150-200 V
 - Hint of tolerance beyond 10^{14} n$_{eq}$/cm2

! Prototypes area 10 mm2

S. Feigl et al., PoS (TIPP2014) 280

T. Hemperek et al., arXiv:1412.3973

J. Baudot - Fully depleted CPS - ANIMMA April 2015
Way 2: High Resistivity

- **Experiments**
 - ALICE, CBM
 - soft X-rays detection
 - Groups in Bonn, CERN, RAL, Strasbourg

- **Concept**
 - High Resistivity thin epi-layer
 - moderate voltage $\lesssim 10$ V

⇒ See next slides for IPHC developments
Depleted-CPS prototypes

- **2 Technologies explored**

 - **Tower Jazz 0.18 µm ➔ Pegasus-1/2**
 - Various sensitive layers
 - epi with >1 kΩ·cm, 18, 30, 40 µm thick
 - Czochralski substrate-thick
 - Main architecture tested
 - Analogue readout with 10 µs integration time
 - Collection node AC-coupled to amplificator
 - Small matrix: 32 columns x 56 rows
 - Pixel size 25x25 µm²

 - **EPC-ESPROSS 0.15 µm ➔ MIMOSA-33**
 - high resistivity 50 µm thinned + passivated substrate
 - Main architecture tested
 - Analogue read-out with 11 µs integration time
 - Back-side biasing through IP structure
 - Small matrix: 8 columns x 44 rows
 - Pixel size 25x25 µm²

Ready for back-side illumination!

M. Havranek et al., JINST 10 (2015) 02, P02013
Reported measurements

- **X-ray from 55Fe illumination**
 - monochromatic rays (5.9 & 6.4 keV)
 - Energy calibration (5.9 keV = 1640 e- in Si)

- **β from 90Sr illumination**
 - MIP-like e- (~80 e-h/µm)
 - Probe the sensitive volume in depth

Room temperature measurements

<table>
<thead>
<tr>
<th>Vbias</th>
<th>Number of Entries</th>
<th>Q_{seed} (ADC Counts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13V</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vbias</th>
<th>Number of Entries</th>
<th>$Q_{cluster}$ (ADC counts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13V</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

J. Baudot - Fully depleted CPS - ANIMMA April 2015
Equivalent capacitance
- From 55Fe peak:
 \[C_{eq} = \frac{Q(1640e-)}{V_{mes}(peak)} \times g_{Ampli} \]
 \(g_{Ampli} \) poorly known \(\Rightarrow \) no absolute measure
- Expected behavior \(C_{eq} \propto \frac{1}{\sqrt{V_{bias}}} \)

Equivalent noise charge
- Interplay \(C_{eq} \) & leakage current
View on depletion 1/4

- **Equivalent capacitance**
 - From 55Fe peak:
 \[
 C_{eq} = \frac{Q(1640e^-)}{V_{mes}(peak)} \times g_{Ampli}
 \]
 \(g_{Ampli}\) poorly known \(\Rightarrow\) no absolute measure
 - Expected behavior \(C_{eq} \propto \frac{1}{\sqrt{V_{bias}}}\)

- **Equivalent noise charge**
 - Interplay \(C_{eq}\) & leakage current

\[
C_{eq} = \frac{Q(1640e^-)}{V_{mes}(peak)} \times g_{Ampli}
\]
Equivalent capacitance
- From 55Fe peak:
 \[C_{eq} = \frac{Q(1640e^-)}{g_{Ampli}} \times \frac{1}{V_{mes}(peak)} \]

 \(g_{Ampli} \) poorly known \(\Rightarrow \) no absolute measure
- Expected behavior \(C_{eq} \propto \frac{1}{\sqrt{V_{bias}}} \)

- Depletion-like behavior observed
 - Saturation of effect \(\lesssim 10 \text{ V} \) (~ \(V_{dep} \) ?)
 - Reasonable noise for PEGASUS
 - ENC \~ 30 e-
 - Large noise for MIMOSA-33
 - ENC \~ 75 e-
 - Poorly tuned \(\mu \)-circuits parameters

Equivalent noise charge
- Interplay \(C_{eq} \& \) leakage current

\[C_{eq} = (7 + 10 / \sqrt{V_{bias}}) \times 10^{-15} \]
View on depletion 2/4

- **Equivalent charge collection thickness**
 - From 90Sr-\(\beta\):

 \[
d_{eq} = \frac{\text{Max.Prob.}(Q_{\text{cluster}}) \times \text{conv.}(e/adc)}{80(e/\mu m)}
 \]

- **Expectation:** \(d_{eq} \propto \sqrt{V_{bias}}\)
 - **No change with bias voltage**
 - even if not fully depleted, diffusion complete charge collection
 - Method useless to evaluate depletion depth (with epi layer)
Cluster size is impacted by depletion → ratio $Q_{\text{seed}} / Q_{\text{cluster}}$

- Clear evolution with bias voltage
 - Method Saturation effects ≤ 8 V
 - However not quantitative for depletion depth
Another look at cluster size
- # significant pixel contributing in average to the cluster charge

PEGASUS – epi 18 µm @ 1 V

significant pixels

Full charge in 5x5 pixels

Same charge with 4 highest pixels

Repeated over all V_{bias}

⇒ Same qualitative effect observable
Some global property

- **Energy resolution**
 - Pegasus-18µm @ $V_{bias} = 12$V
 - $\sigma_{charge} = 36 \pm 3$ e-
Ongoing prototypes design

- Submission to Tower-Jazz 0.18 µm technology (June 2015)

- **MIMOSA - 22 SX**
 - Forerunner of sensors dedicated to X-rays with energy < 5 keV
 - Pixel pitch ≤ 25x25 µm² and ≃ 10⁴ photons/pixel/sec
 - Developed with the detector group of SOLEIL
 - "Not so small" matrix: 5.6x 4.4 mm²
 - combine:
 - AC coupled collection diode from PEGASUS
 - read-out architecture developed for ALICE
 - Binary output:
 - From 2 discriminators/column → energy window selection
 - Photons detected individually → counting & spatial resolution

- **Small analogue prototype**
 - Faster amplification → target 10⁶ photons/pixel/sec
 - Mitigation of noise
Conclusions & Outlooks

- **Fully depleted CPS promises**
 - Spectroscopic measurements
 - Tolerance to non-ionizing particle fluence ($\leq 10^{15}\, n_{eq}/cm^2$ range ?)

- **Active field**
 - Large collaboration in the game (HL-LHC) around HV-CMOS
 - Other developments for specific applications (SOLEIL)

- **Still only “promising”**
 - Concept validated on small prototypes
 - Next step to be validated = cm2 sensor (requires final r-o archi. + uniformity)

- **More to learn on prototypes**
 - Depletion depth? → Chochralsky substrate
 - Depletion uniformity? → laser scan of surface area
 - Non-ionizing tolerance (Pitch-depletion correlation?)